6.241 Dynamic Systems and Control

Lecture 16: Bode's Sensitivity Integral
Readings: DDV, Chapter 18

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
April 4, 2011

Cauchy's integral theorem

- Let $\Omega \subset \mathbb{C}$ be an open, simply connected set.
- Let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function. In other words, the limit

$$
f^{\prime}\left(s_{0}\right)=\lim _{s \rightarrow s_{0}} \frac{f(s)-f\left(s_{0}\right)}{s-s_{0}}
$$

exists (and is continuous) for all $s_{0} \in \Omega$. Note that a complex function is holomorphic if and only if it is analytic.

- Let $\gamma:[0,1] \rightarrow \Omega$ be a differentiable function, such that $\gamma(0)=\gamma(1)$.
- Then,

$$
\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t=\int_{\Gamma} f(z) d z=0
$$

where Γ is the closed contour traced by $\gamma(t)$ as t ranges from 0 to 1 .

Cauchy's integral formula

- Let Ω, f, γ, and Γ be as in the previous slide.
- Furthermore, Let p be a point that is encircled counter-clockwise exactly once by $\gamma(t)$ as t ranges from 0 to 1 .
- Then,

$$
\int_{\Gamma} \frac{f(z)}{z-p} d z=2 \pi j f(p)
$$

- Proof sketch:
- Using Cauchy's integral theorem, show that the value of the integral does not depend on the enclosing path. In particular, we can choose a circle C_{ϵ} of radius ϵ around p.
- Note, for $\gamma(t)=p+\epsilon e^{2 \pi j t}, \quad \int_{C_{\epsilon}} \frac{1}{z-p} d z=2 \pi j \epsilon \int_{0}^{1} \frac{e^{2 \pi j t}}{\epsilon e^{2 \pi j t}} d t=2 \pi j$.
- Then,

$$
\begin{aligned}
\left|\int_{C_{\epsilon}} \frac{f(z)}{z-p} d z-2 \pi j f(p)\right| \leq & \int_{C_{\epsilon}} \frac{|f(z)-f(p)|}{|z-p|}|d z| \leq \\
& \int_{0}^{2 \pi} \frac{\max _{z \in C_{\epsilon}}|f(z)-f(p)|}{\epsilon} \epsilon d t \rightarrow 0
\end{aligned}
$$

Bode's Sensitivity Integral for open-loop stable systems

- Let $L(s)$ be a proper, scalar rational transfer function, of relative degree n_{r}, i.e., n_{r} is the difference between the degrees of the denominator and of the numerator.
- Define $G(s)=(1+L(s))^{-1}$, and assume that G has neither poles nor zeros in the closed right half plane (i.e., both L and G are stable).
- Then,

$$
\int_{0}^{\infty} \log |G(j \omega)| d \omega= \begin{cases}0 & \text { if } n_{r}>1, \\ -\kappa \frac{\pi}{2} & \text { if } n_{r}=1,\end{cases}
$$

where $\kappa=\lim _{s \rightarrow \infty} s L(s)$.

Proof sketch

- Since $\log |G(s)|$ is analytic on the RHP, then $\int_{D} \log |G(s)| d s=\int_{C_{i}} \log |G(s)| d s+\int_{C_{\infty}} \log |G(s)| d s=0$, i.e.,

$$
j \int_{0}^{\infty} \log |G(j \omega)| d \omega=\frac{1}{2} \int_{C_{\infty}} \log |1+L(s)| d s
$$

- For large $s, \log |1+L(s)| \approx \log \left|1+a s^{-n_{r}}\right| \approx\left|a s^{-n_{r}}\right|$, so on C_{E},

$$
\begin{aligned}
& \frac{1}{2} \int_{C_{E}} \log |1+L(s)| d s \approx-\int_{0}^{\pi / 2}\left|\frac{a}{E^{n_{r}}} e^{-j n_{r} t}\right| \cdot E j e^{j t} d t= \\
&-\frac{a j}{E^{n_{r}-1}} \int_{0}^{\pi / 2} e^{j t} d t=-\frac{a j}{E^{n_{r}-1}} \frac{\pi}{2}
\end{aligned}
$$

- In other words, for $n_{r}>1$, the integral on C_{E} converges to 0 , and for $n_{r}=1$, it converges to $\kappa \frac{\pi}{2} j$.

Bode's Sensitivity Integral

- Let $L(s)$ be a proper, scalar rational transfer function, of relative degree n_{r}.
- Define $G(s)=(1+L(s))^{-1}$, and assume that G has no poles in the closed right half plane (i.e., G is stable), and has $q \geq 0$ zeros in the closed RHP plane (i.e., L can be unstable), at location $z_{1}, z_{2}, \ldots, z_{q}$, with $\operatorname{Re}\left(z_{i}\right) \geq 0$.
- Then,

$$
\int_{0}^{\infty} \log |G(j \omega)| d \omega= \begin{cases}\pi \sum_{i=1}^{q} z_{i} & \text { if } n_{r}>1, \\ -\kappa \frac{\pi}{2}+\pi \sum_{i=1}^{q} z_{i} & \text { if } n_{r}=1,\end{cases}
$$

where $\kappa=\lim _{s \rightarrow \infty} s L(s)$.

Proof sketch

- The function $\log |G(s)|$ is not analytic on the RHP. Define

$$
\hat{G}(s)=G(s) \prod_{i=1}^{a} \frac{s+z_{i}}{s-z_{i}} .
$$

- Since $\log |\hat{G}(s)|$ is analytic on the RHP, then $\int_{D} \log |\hat{G}(s)| d s=0$, and hence

$$
\int_{C_{i}} \log |G(s)| d s+\int_{C_{\infty}} \log |G(s)| d s+\sum_{i=1}^{q} \int_{D} \log \left|\frac{s+z_{i}}{s-z_{i}}\right| d s=0
$$

- Proceeding as in the basic case, and noting that

$$
\int_{C_{i}} \log \left|\frac{s+z_{i}}{s-z_{i}}\right| d s=0
$$

and

$$
\int_{C_{\infty}} \log \left|\frac{s+z_{i}}{s-z_{i}}\right| d s=\int_{C_{\infty}} \log \left|1+\frac{z_{i}}{s}\right| d s-\int_{C_{\infty}} \log \left|1-\frac{z_{i}}{s}\right| d s=-j \pi z_{i},
$$

- We get the desired result. Notice also that $\sum_{i} \operatorname{Re}\left(z_{i}\right)=\sum_{i} z_{i}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

