6.241 Dynamic Systems and Control

Lecture 13: I/O Stability

Readings: DDV, Chapters 15, 16

Emilio Frazzoli

Aeronautics and Astronautics Massachusetts Institute of Technology

March 14, 2011

E. Frazzoli (MIT)

Lecture 13: I/O Stability

Mar 14, 2011 1 / 6

$\mathcal{L}_2\text{-induced norm}$

Theorem (\mathcal{H}_{∞} norm is the \mathcal{L}_2 -induced norm)

The L_2 -induced norm of a causal, CT, LTI, stable system S with impulse response H(t) and transfer function H(s) is

$$|S||_{2,\mathrm{ind}} = \sup_{\omega \in \mathbb{R}} \sigma_{\max}[H(j\omega)] = ||H||_{\infty}.$$

• From Parseval's equality, $\|y\|_2^2 = \frac{1}{2\pi} \int_{-\infty}^{+\infty} Y'(j\omega) Y(j\omega) \ d\omega$.

Hence,

$$\|y\|_2^2 \leq \frac{1}{2\pi} \int_{\mathbb{R}} \sigma_{\max}(H(j\omega))^2 U'(j\omega) U(j\omega) \ d\omega \leq \sup_{\omega} \sigma_{\max}[H(j\omega)]^2 \|u\|_2^2.$$

- To show the bound is tight, pick (SISO case) $u(t) = exp(\epsilon t + j\omega_0 t)$, i.e., $U(s) = 1/(s \epsilon j\omega_0)$, with $\epsilon < 0$. Then, $||y||_2^2 = |H(\epsilon + j\omega_0)|^2 ||u||_2^2$
- As $\epsilon \to 0$, by the continuity of H on the imaginary axis, the gain approaches $|H(j\omega_0)|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computation of \mathcal{H}_∞ norm

Theorem

Let $H(s) = C(sI - A)^{-1}B$ be the transfer function of a stable, strictly causal (D = 0) LTI system. Define

$$\mathcal{M}_{\gamma} = \begin{bmatrix} A & rac{1}{\gamma} B B^{T} \\ -rac{1}{\gamma} C^{T} C & -A^{T} \end{bmatrix}.$$

Then $||H||_{\infty} < \gamma$ if and only if M_{γ} has no purely imaginary eigenvalues.

- This allows using bisections to compute $\|H\|_{\infty}$ to arbitrary precision.
- Similar formulas exist for the general case $(D \neq 0)$, but are more complicated.

Computation of \mathcal{H}_∞ norm

[diagram with H(s) and $H^{T}(-s)$ in unit positive feedback]

- $||H|| < \gamma$ if and only if $I \frac{1}{\gamma^2}H'(j\omega)H(j\omega)$ is invertible for all $\omega \in \mathbb{R}$, i.e., if and only if $G_{\gamma}(s) = \left[I - \frac{1}{\gamma^2}H^T(-s)H(s)\right]^{-1}$ has no poles on the imaginary axis.
- The next step is to build a realization of $G_{\gamma}(s)$.

•
$$H^T(-s) = -B^T(sI + A)^{-T}C^T$$
, so a realization of this is $(-A^T, -C^T, B^T, 0)$.

• Putting together the realizations, and eliminating the internal variables, one gets the system matrix of the realization we seek as

$$M_{\gamma} = \begin{bmatrix} A & \frac{1}{\gamma} B B^{T} \\ -C^{T} C & -A^{T} \end{bmatrix}. \qquad \Box$$

<ロ> (四) (四) (三) (三) (三) (三)

Energy of the impulse response

- Consider a stable, strictly causal CT LTI system with state-space model (A, B, C, 0).
- The energy of the response to an unit impulse can be computed as

$$\|H\|_{\mathcal{L}_2}^2 = \operatorname{Tr}\left[\int_0^{+\infty} H(t)^{\mathsf{T}} H(t) \ dt\right] = \frac{1}{2\pi} \operatorname{Tr}\left[\int_{-\infty}^{+\infty} H(j\omega)' H(j\omega) \ ds\right] = \|H\|_{\mathcal{H}_2}^2,$$

• This can be computed exactly noting that

$$\|H\|_{\mathcal{L}_2}^2 = \operatorname{Tr}\left[\int_0^{+\infty} C e^{At} B B^T e^{A^T t} C^T dt\right] = \operatorname{Tr}\left[CPC^T\right],$$

where P (called the controllability gramian) can be computed through the Lyapunov equation

$$AP + PA^T + BB^T = 0$$

< ロ > < 同 > < 回 > < 回 >

Some remarks on the \mathcal{H}_{∞} and \mathcal{H}_{2} norms¹

- There is no general relationship between \mathcal{H}_∞ and $\mathcal{H}_\infty.$
- For example, consider

$$G_1(s) = rac{1}{\epsilon s + 1}$$
 $G_2(s) = rac{\epsilon s}{s^2 + \epsilon s + 1}$

As $\epsilon \to 0$, $\|G_1\|_{\infty} = \|G_2\|_{\infty} = 1$, but $\|G_1\|_2 \to \infty$, and $\|G_2\|_2 \to 0$.

• The \mathcal{H}_{∞} norm is an induced norm; then, the sub-multiplicative property holds, i.e., for any $G_1, G_2 \in \mathcal{H}_{\infty}$,

$$\|G_1G_2\|_{\mathcal{H}_{\infty}} \leq \|G_1\|_{\mathcal{H}_{\infty}}\|G_2\|_{\mathcal{H}_{\infty}}$$

• The \mathcal{H}_2 norm is not an induced norm. So, in general, the submultiplicative property does not hold.

¹John Wen, 2006

(日)

MIT OpenCourseWare http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.