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� � 

Introduction


Last week, we looked at notions of stability for state-space systems, with no 
inputs. 

Now we want to consider notions of stability under the effect of a (forcing) 
input. 

Central to the discussion is the notion of norm of a signal—which is just the 
same we already discussed, when considering signals as infinite-dimensional 
vectors. 

In the following, let w : T Rn, with w(t) = w1(t) w2(t) . . . wn(t) .→ 
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Signal norms


∞-norm: Peak magnitude 

�w�∞ = sup 
t∈T 

�w(t)�∞ = sup 
t∈T 

max 
i=1...n 

|wi (t)| 

2-norm: (Square root of the) Energy 

�w�2 
2 = 

⎧ ⎪⎨ ⎪⎩ 

� 
k∈Z w [k]�w [k] = 

� 
k∈Z �w [k]�2 

2 (DT) � ∞ 

−∞ 
w (t)�w(t) dt = 

� ∞ 

−∞ 
�w(t)�2 

2 dt (CT) 

Power (NOT a norm!) 

Pw = ρ2 
w = 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

lim 
N→+∞ 

1 
2N 

N� 

k=−N 

w [k]�w [k] = lim 
N→+∞ 

1 
2N 

N� 

k=−N 

�w [k]�2 
2 (DT) 

lim 
T →+∞ 

1 
2T 

� T 

−T 
w(t)�w(t) dt = lim 

T →+∞ 

1 
2T 

� T 

−T 
�w (t)�2 

2 dt (CT) 

1-norm: Action 

�w�1 = 

⎧ ⎪⎨ ⎪⎩ 

� 
k∈Z �w [k]�1 (DT) � ∞ 

−∞ 
�w(t)�1 dt (CT) 
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Some examples


Let w(t) = w̄ , ∀t ∈ T. Then, 

�w�∞ = |w̄ |;


�w�2 = +∞;


ρw = |w̄ |;


�w�1 = +∞.


we−atLet w(t) = ¯ , ∀t ∈ R≥0, and a > 0. Then, 

�w�∞ = |w̄ |; 

�w�2 = |w̄ |/
√
2a;


ρw = 0;


�w�1 = |w̄ |/a. 
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System Norms


Recall that a I/O model of a system is an operator mapping an input signal u 
to an output signal y , i.e., y = Su. 

We can define an induced norm for a system in exactly the same way as we 
did for matrices, i.e., 

�S�p,ind := sup 
�Su�p 

u=0� �u�p 

We will see how to compute system norms later. 
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Input-Output stability


Definition (Input-Output stability) 

A system with I/O model S is p-stable (or �p-stable, or Lp -stable), if and only if 
its p-induced norm is finite, i.e., �S�p,ind < ∞. In particular, a system is 
Bounded-Input, Bounded-Output stable if and only if it is ∞-stable. 

Example: an integrator is not BIBO stable, and not p-stable for any p. 
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� 

BIBO stability of CT LTI systems 

The I/O model of a LTI system with m inputs and p outputs can be 
described by an impulse response matrix, H : T Rp×m, whose elements →
hij : T R represent the impulse response from input j to output i .→ 

∞ 

yi (t) = hij (t − τ )uj (τ) dτ. 
−∞ 

Theorem 

A CT LTI system S with impulse response matrix H is BIBO stable if and only if 

�S�∞,ind = max 
1≤i≤p 

m� 

j=1 

� +∞ 

−∞ 
|hij (t)| dt < ∞. 

Note: in the scalar case (SISO), �S�∞,ind = �h�1, i.e., the ∞-induced norm 
of the system S is the L1 norm of the impulse response h (seen as a signal in 
the time domain). Often �S�∞,ind is referred to as the L1 norm of H in the 
general, MIMO case as well. 
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Proof


Sufficiency: 

m

−∞ 

� 

j=1 

+∞ 

hij (t − τ )uj (τ ) dτ�y�∞ = sup max 
t∈R 1≤i≤p 

m

≤ sup max hij (t − τ )
t∈R 1≤i≤p

j=1 −∞ 
| | dτ · �u�∞ 

≤ �S�∞,ind �u�∞ 

Necessity: 

Focus on the scalar case, i.e., R |h(t)|dt = ∞. 

+∞ 

Choose u such that u(t) = −sign(h(−t)). Clearly, �u�∞ ≤ 1. 

Then y(0) = R h(0 − τ)u(τ) dτ = R |h(τ )| dτ = ∞ 
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Additional remarks 

A similar result holds in discrete time. 

For finite-dimensional LTI systems, one can construct a state-space model, 
and compute 

H(t) = CeAt B + Dδ(t), t ≥ 0, 

which has Laplace transform 

H(s) = C (sI − A)−1B + D. 

The system is BIBO stable if and only if the poles of H(s) are in the open

left half plane.


Asymptotic stability implies BIBO stability, but not viceversa.


For LTI systems, BIBO stability implies p-stability for any p.


For time-varying and nonlinear systems, the statements above do not

necessarily hold.
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L2-induced norm 

Theorem (H∞ norm is the L2-induced norm) 

The L2-induced norm of a causal, CT, LTI, stable system S with impulse response 
H(t) and transfer function H(s) is 

�S�2,ind = sup 
ω∈R 

σmax[H(jω)] = �H�∞. 

From Parseval’s equality, �y�2 = 1 
� +∞ 

Y �(jω)Y (jω) dω. 2 2π −∞ 

Hence, 

12 2σmax(H(jω))2U �(jω)U(jω) dω ≤ sup σmax[H(jω)]2 2.�y�2 ≤ 
2π R ω 

�u�

To show the bound is tight, pick (SISO case) u(t) = exp(�t + jω0t), i.e., 
U(s) = 1/(s − � − jω0), with � < 0. Then, �y�2 = |H(� + jω0)|2�u�2 

2 2 

As � 0, by the continuity of H on the imaginary axis, the gain approaches → 
|H(jω0)|. 
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� �

Computation of H∞ norm 

Theorem 

Let H(s) = C (sI − A)−1B be the transfer function of a stable, strictly causal 
(D = 0) LTI system. Define 

Mγ = 

� 
A 1 

γ BB
T 

− 1 
γ C T C −AT 

� 

. 

Then �H�∞ < γ if and only if Mγ has no purely imaginary eigenvalues. 

�H� < γ if and only if I − 1 H �(jω)H(jω) is invertible for all ω ∈ R, i.e., if γ2 

and only if Gγ (s) = I − γ
1
2 H

T (−s)H(s) 
−1 

has no poles on the imaginary 

axis. 

The next step is to build a realization of Gγ (s). 
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Computation of H∞ norm 

diagram with H(s) and HT (−s) in unit positive feedback 

HT (−s) = −BT (sI + A)−T C T , so a realization of this is

(−AT , −C T , BT , 0).


Putting together the realizations, and eliminating the internal variables, one 
gets the system matrix of the realization we seek as 

A 1 BBT 

Mγ = γ , −C T C −AT 

which proves the claim. 
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