6.241 Dynamic Systems and Control

Lecture 9: Transfer Functions

Readings: DDV, Chapters 10, 11, 12

Emilio Frazzoli
Aeronautics and Astronautics
Massachusetts Institute of Technology

March 2, 2011

Asymptotic Stability (Preview)

- We have seen that the unforced state response $(u=0)$ of a LTI system is easily computed using the " A " matrix in the state-space model:

$$
x[k]=A^{k} x[0], \quad \text { or } \quad x(t)=e^{A t} x(0) .
$$

- A system is asymptotically stable if $\lim _{t \rightarrow+\infty} x(t)=0$, for all x_{0}.
- Assume A is diagonalizable, i.e., $V^{-1} A V=\Lambda$, and let $r=V x$ be the vector of model coordinates. Then,

$$
r_{i}[k]=\lambda_{i}^{k} r_{i}[0], \quad \text { or } \quad r_{i}(t)=e^{\lambda_{i} t} r_{i}(0), \quad i=1, \ldots, n .
$$

- Clearly, for the system to be asymptotically stable, $\left|\lambda_{i}\right|<1$ (DT) or $\operatorname{Re}\left(\lambda_{i}\right)<0(C T)$ for all $i=1, \ldots, n$.
- It turns out that this condition extends to the general (non-diagonalizable) case. More on this later in the course.

(Time-domain) Response of LTI systems - summary

- Based on the discussion in previous lectures, the solution of initial value problems (i.e., the response) for LTI systems can be written in the form:

$$
y[k]=C A^{k} x[0]+C \sum_{i=0}^{k-1}\left(A^{k-i-1} B u[i]\right)+D u[t]
$$

or

$$
y(t)=C \exp (A t) x(0)+C \int_{0}^{t} \exp (A(t-\tau)) B u(\tau) d \tau+D u(t)
$$

- However, the convolution integral (CT) and the sum in the DT equation are hard to interpret, and do not offer much insight.
- In order to gain a better understanding, we will study the response to elementary inputs of a form that is
- particularly easy to analyze: the output has the same form as the input.
- very rich and descriptive: most signals/sequences can be written as linear combinations of such inputs.
- Then, using the superposition principle, we will recover the response to general inputs, written as linear combinations of the "easy inputs."

The continuous-time case: elementary inputs

- Let us choose as elementary input $u(t)=u_{0} e^{s t}$, where $s \in \mathbb{C}$ is a complex number.
- If s is real, then u is a simple exponential.
- If $s=j \omega$ is imaginary, then the elementary input must always be accompanied by the "conjugate," i.e.,

$$
u(t)+u^{*}(t)=u_{0} e^{j \omega t}+u_{0} e^{-j \omega t}=2 u_{0} \cos (\omega t) ;
$$

in other words, if s is imaginary, then $u(t)=e^{s t}$ must be understood as a "half" of a sinusoidal signal.

- if $s=\sigma+j \omega$, then

$$
\begin{aligned}
u(t)+u^{*}(t)=u_{0}\left(e^{\sigma t} e^{j \omega t}+\right. & \left.u_{0} e^{\sigma t} e^{-j \omega t}\right) \\
& =u_{0}\left(e^{\sigma t}\left(e^{j \omega t}+e^{-j \omega t}\right)\right)=2 u_{0} e^{\sigma t} \cos (\omega t)
\end{aligned}
$$

and the input u is a "half" of a sinusoid with exponentially-changing amplitude.

Output response to elementary inputs $(1 / 2)$

- Recall that,

$$
y(t)=C e^{A t} x(0)+C \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+D u(t) .
$$

- Plug in $u(t)=u_{0} e^{s t}$:

$$
\begin{aligned}
y(t)=C e^{A t} x(0)+ & C \int_{0}^{t} e^{A(t-\tau)} B u_{0} e^{s \tau} d \tau+D u_{0} e^{s t} \\
& =C e^{A t} x(0)+C\left(\int_{0}^{t} e^{(s l-A) \tau} d \tau\right) e^{A t} B u_{0}+D u_{0} e^{s t}
\end{aligned}
$$

- If $(s I-A)$ is invertible (i.e., s is not an eigenvalue of A), then

$$
y(t)=C e^{A t} x(0)+C(s l-A)^{-1}\left[e^{(s l-A) t}-I\right] e^{A t} B u_{0}+D u_{0} e^{s t} .
$$

Output response to elementary inputs $(2 / 2)$

- Rearranging:

$$
y(t)=\underbrace{C e^{A t} x(0)-C(s I-A)^{-1} e^{A t} B u_{0}}_{\text {Transient response }}+\underbrace{\left[C(s I-A)^{-1} B+D\right] u_{0} e^{s t}}_{\text {Steady-state response }} .
$$

- If the system is asymptotically stable, $e^{A t} \rightarrow 0$, and the transient response will converge to zero.
- The steady state response can be written as:

$$
y_{\mathrm{ss}}=G(s) e^{s t}, \quad G(s) \in \mathbb{C}^{n_{y} \times n_{u}},
$$

where $G(s)=C(s l-A)^{-1} B+D$ is a complex matrix.

- The function $G: s \rightarrow G(s)$ is also known as the transfer function: it describes how the system transforms an input $e^{s t}$ into the output $G(s) e^{s t}$.

Laplace Transform

- The (one-sided) Laplace transform $F: \mathbb{C} \rightarrow \mathbb{C}$ of a sequence $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ is defined as

$$
F(s)=\int_{0}^{+\infty} f(t) e^{-s t} d t
$$

for all s such that the series converges (region of convergence).

- Given the above definition, and the previous discussion,

$$
\begin{gathered}
Y(s)=G(s) U(s) . \\
U(s) e^{s t} \Rightarrow \quad Y(s) e^{s t}=G(s) U(s) e^{s t}
\end{gathered}
$$

- Also, $G(s)$ is the Laplace transform of the "impulse" response.

The discrete-time case: elementary inputs

- Let us choose as elementary input $u[k]=u_{0} z^{k}$, where $z \in \mathbb{C}$ is a complex number.
- If z is real, then u is a simple geometric sequence.
- Recall

$$
y[k]=C A^{k} x[0]+C \sum_{i=0}^{k-1} A^{k-i-1} B u[i]+D u[k] .
$$

- Plug in $u[k]=u_{0} z^{k}$, and substitute $I=k-i-1$:

$$
\begin{aligned}
y[k]=C A^{k} x[0]+C \sum_{l=0}^{k-1} & A^{\prime} B u_{0} z^{k-I-1}+D u_{0} z^{k} \\
& =C A^{k} x[0]+C z^{k-1}\left(\sum_{i=0}^{k-1}\left(A z^{-1}\right)^{i}\right) B u_{0}+D u_{0} z^{k}
\end{aligned}
$$

Matrix geometric series

- Recall the formula for the sum of a geometric series:

$$
\sum_{i=0}^{k-1} m^{i}=\frac{1-m^{k}}{1-m}
$$

- For a matrix:

$$
\begin{gathered}
\sum_{i=0}^{k-1} M^{i}=I+M+M^{2}+\ldots M^{k-1} \\
\sum_{i=0}^{k-1} M^{i}(I-M)=\left(I+M+M^{2}+\ldots M^{k-1}\right)(I-M)=I-M^{k}
\end{gathered}
$$

i.e.,

$$
\sum_{i=0}^{k-1} M^{i}=\left(I-M^{k}\right)(I-M)^{-1}
$$

Discrete Transfer Function

- Using the result in the previous slide, we get

$$
\begin{aligned}
y[k]=C A^{k} x[0]+C z^{k-1}\left(I-A^{k} z^{-k}\right. &)\left(I-A z^{-1}\right)^{-1} B u_{0}+D u_{0} z^{k} \\
& =C A^{k} x[0]+C\left(z^{k} I-A^{k}\right)(z I-A)^{-1} B u_{0}+D u_{0} z^{k}
\end{aligned}
$$

- Rearranging:

$$
y[k]=\underbrace{C A^{k}\left(x[0]-(z I-A)^{-1} B u_{0}\right)}_{\text {Transient response }}+\underbrace{\left(C(z I-A)^{-1} B+D\right) u_{0} z^{k}}_{\text {Steady-state response }} .
$$

- If the system is asymptotically stable, the transient response will converge to zero.
- The steady state response can be written as:

$$
y_{\mathrm{ss}}[k]=G(z) z^{k}, \quad G(z) \in \mathbb{C}
$$

where $G(z)=C(z I-A)^{-1} B+D$ is a complex number.

- The function $G: z \rightarrow G(z)$ is also known as the (pulse, or discrete) transfer function: it describes how the system transforms an input z^{k} into the output $G(z) z^{k}$.

Z-Transform

- The (one-sided) z-transform $F: \mathbb{C} \rightarrow \mathbb{C}$ of a sequence $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ is defined as

$$
F(z)=\sum_{k=0}^{+\infty} f[k] z^{-k}
$$

for all z such that the series converges (region of convergence).

- Given the above definition, and the previous discussion,

$$
\begin{aligned}
& Y(z)=G(z) U(z) \\
U(z) z^{k} & \Rightarrow \quad Y(z) z^{k}=G(z) U(z) z^{k} \\
& Y(z)=G(z) U(z)
\end{aligned}
$$

- Also, $G(z)$ is the z transform of the "impulse" response, i.e., the response to the sequence $u=(1,0,0, \ldots)$.

Models of continuous-time systems

Models of discrete-time systems

$$
\begin{aligned}
& \\
& x[k+1]=A x[k]+B u[k] \\
& y[k]= \\
& C x[k]+D u[k]
\end{aligned} \quad A=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & 0 \\
0 & \ldots & 1 & 0 \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right] \quad B=\left[\begin{array}{c}
0 \\
\cdots \\
0 \\
1
\end{array}\right]
$$

$$
C=\left[\begin{array}{llll}
b_{0} & b_{1} & \cdots & b_{n-1}
\end{array}\right] \quad D=d
$$

$$
G(z)=C(z l-A)^{-1} B+D
$$

$$
G(z)=\frac{b_{n-1} z^{n-1}+\ldots+b_{0}}{z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}}+d
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

