6.241 Dynamic Systems and Control

Lecture 8: Solutions of State-space Models

Readings: DDV, Chapters 10, 11, 12 (skip the parts on transform methods)

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
February 28, 2011

Forced response and initial-conditions response

- Assume we want to study the output of a system starting at time t_{0}, knowing the initial state $x\left(t_{0}\right)=x_{0}$, and the present and future input $u(t), t \geq t_{0}$. Let us study the following two cases instead:
- Initial-conditions response:

$$
\left\{\begin{array}{l}
x_{\mathrm{IC}}\left(t_{0}\right)=x_{0}, \\
u_{\mathrm{IC}}(t)=0,
\end{array} \quad t \geq t_{0}, \quad \rightarrow \quad y_{\mathrm{IC}}\right.
$$

- Forced response:

$$
\left\{\begin{array}{l}
x_{\mathrm{F}}\left(t_{0}\right)=0, \\
u_{\mathrm{F}}(t)=u(t), \quad t \geq t_{0},
\end{array} \rightarrow \quad y_{\mathrm{F}} .\right.
$$

- Clearly, $x_{0}=x_{\mathrm{IC}}+x_{\mathrm{F}}$, and $u=u_{\mathrm{IC}}+u_{\mathrm{F}}$, hence

$$
y=y_{\mathrm{IC}}+y_{\mathrm{F}}
$$

that is, we can always compute the output of a linear system by adding the output corresponding to zero input and the original initial conditions, and the output corresponding to a zero initial condition, and the original input.

- In other words, we can study separately the effects of non-zero inputs and of non-zero initial conditions. The "complete" case can be recovered from these two.

Initial-conditions response (DT)

Consider the case of zero input, i.e., $u=0$; in this case, the state-space equations are written as the difference equations

$$
\begin{array}{ll}
x[0]=x_{0} & y[0]=C[0] x_{0} \\
x[1]=A[0] \times[0] & y[1]=C[1] A[0] \times[0] \\
x[2]=A[1] A[0] \times[0] & y[2]=C[2] A[1] A[0] \times[0] \\
\cdots & \ldots \\
x[k]=\Phi[k, 0] \times[0] & y[k]=C[k] \Phi[k, 0] \times[0]
\end{array}
$$

where we defined the state transition matrix $\Phi[k, \ell]$ as

$$
\Phi[k, \ell]= \begin{cases}A[k-1] A[k-2] \ldots A[/], & k>\ell \geq 0 \\ I, & k=\ell\end{cases}
$$

Forced response with zero i.c. (DT)

- We need to compute the solution of $x[k+1]=A_{d} x[k]+B_{d} u[k], x[0]=0$.
- By substitution, we get:

$$
\begin{aligned}
& x[k]=A[k-1] x[k-1]+B[k-1] u[k-1] \\
& =A[k-1](A[k-2] x[k-2]+B[k-1] u[k-2])+B[k-1] u[k-1] \\
& =\underbrace{\Phi[k, 0] x[0]}_{=0}+\sum_{i=0}^{k-1} \Phi[k, i+1] B[i] u[i] .
\end{aligned}
$$

- In other words, $x[k]=\Gamma[k, 0] \mathcal{U}[k, 0]$, where

$$
\Gamma[k, 0]=\left[\begin{array}{llll}
\Phi[k, 1] B[0] & \Phi[k, 2] B[1] & \ldots & B[k-1]
\end{array}\right], \quad \mathcal{U}=\left[\begin{array}{c}
u[0] \\
u[1] \\
\cdots \\
u[k-1]
\end{array}\right] .
$$

- The output is

$$
y[k]=C[k] \Gamma[k, 0] \mathcal{U}[k, 0] .
$$

Summary (DT)

- In general, state/output trajectories of a DT state-space model can be computed as:

$$
\begin{gathered}
x[k]=\Phi[k, 0] x[0]+\Gamma[k, 0] \mathcal{U}[k, 0], \\
y[k]=C[k] \Phi[k, 0] x[0]+C[k] \Gamma[k, 0] \mathcal{U}[k, 0] .
\end{gathered}
$$

- In general $\Phi[k, \ell]$ may not be invertible. In the cases in which it is, one can also compute $x[0]$ as a function of $x[k]$.

Initial-conditions response (CT)

- Consider the case of zero input, i.e., $u=0$; in this case, the state-space equations are written as

$$
\begin{aligned}
\frac{d}{d t} x(t) & =A(t) x(t), \quad x\left(t_{0}\right)=x_{0} \\
y(t) & =C(t) x(t) .
\end{aligned}
$$

- Assume that the matrix function $A: t \mapsto A(t)$ is sufficiently well behaved so that there exists unique state/output signals x and y. (e.g., A is piecewise-continuous).
- Define a state transition function $\Phi(t, \tau)$ such that, for all $t, \tau \in \mathbb{T}$,

$$
\begin{gathered}
\frac{\partial}{\partial t} \Phi(t, \tau)=A(t) \Phi(t, \tau) \\
\Phi(t, t)=l
\end{gathered}
$$

- The function Φ can in general be computed numerically, integrating a differential equation in n unknown functions, with n initial conditions (assuming $x \in \mathbb{R}^{n}$).
- Then, $x(t)=\Phi\left(t, t_{0}\right) x_{0}$, and $y(t)=C(t) \Phi\left(t, t_{0}\right) x_{0}$.

Forced response with zero i.c. (CT)

- We need to integrate

$$
\begin{gathered}
\frac{d}{d t} x(t)=A(t) x(t)+B(t) u(t), \quad x\left(t_{0}\right)=0 \\
y(t)=C(t) x(t)+D(t) u(t)
\end{gathered}
$$

- Again, assume the input signal u and the matrix functions A and B are such that there exists a unique solution.
- Claim: the forced solution is

$$
x(t)=\int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau
$$

- The output is

$$
y=C(t) \int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(t) d \tau+D(t) u(t)
$$

Forced response with zero i.c. (CT)

- Verify by substitution: clearly $x\left(t_{0}\right)=0$; moreover,

$$
\begin{aligned}
\frac{d}{d t} x(t) & =\frac{d}{d t} \int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau= \\
& \quad \int_{t_{0}}^{t} \frac{\partial}{\partial t} \Phi(t, \tau) B(\tau) u(\tau) d \tau+[\Phi(t, \tau) B(\tau) u(\tau)]_{\tau=t} \\
= & A(t) \int_{t_{0}}^{t} \Phi(t, \tau) B(\tau) u(\tau) d \tau+B(t) u(t)=A(t) x(t)+B(t) u(t)
\end{aligned}
$$

- Similarly for the output.

Further properties of the state transition function

- $\Phi\left(t_{2}, t_{0}\right)=\Phi\left(t_{2}, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)$.
- Look up on the lecture notes.

The LTI case

- In DT, if $A[k]=A, B[k]=B$, for all $k \in \mathbb{T}$, then $\Phi[k, \ell]=A^{k-\ell}$, and $\Gamma[k, \ell]=\left[\begin{array}{llll}A^{k-1} B, & A^{k-2} B, & \ldots, & B\end{array}\right]$.
- in CT, if $A(t)=A$, and $B(t)=B$, for all $k \in \mathbb{T}$, then $\Phi(t, \tau)=\exp (A(t-\tau))$, where

$$
\exp (M):=\sum_{i=0}^{+\infty} \frac{1}{i!} M^{i}=I+M+\frac{1}{2} M^{2}+\frac{1}{6} M^{3}+\ldots
$$

- Easy to check that the matrix exponential satisfies the conditions for the state transition function.

Similarity Transformations

- The choice of a state-space model for a given system is not unique.
- For example, let T be an invertible matrix, and set $x=\operatorname{Tr}$, i.e., $r=T^{-1} x$. This is called a similarity transformation.
- The standard state-space model can be written as

$$
\begin{aligned}
T r^{+} & =A T r+B u \\
y & =C T r+D u
\end{aligned}
$$

i.e.,

$$
\begin{aligned}
r^{+} & =\left(T^{-1} A T\right) r+\left(T^{-1} B\right) u=\hat{A} r+\hat{B} u \\
y & =(C T) r+D u=\hat{C} r+\hat{D} u
\end{aligned}
$$

Modal Coordinates

- Is a state trajectory of the form $x[k]=\lambda^{k} v(\lambda \neq 0)$ a valid solution of the state-space model, assuming $u=0$?
- Since $x[k+1]=A x[k]$, then $\lambda^{k+1} v=A \lambda^{k} v$, i.e., $(\lambda I-A) v=0$: the proposed state trajectory is a valid solution if and only if v is (right) eigenvector of A, with eigenvalue λ. It will in fact be a solution of the system with initial condition $\times[0]=v_{i}$.
- Assume that A has n independent eigenvectors. Then, any initial condition can be written uniquely as a linear combination of eigenvectors, i.e., $x[0]=\sum_{i=1}^{n} \alpha_{i} v_{i}$. The solution of the state-space model is then

$$
x[k]=\sum_{i=1}^{n} \alpha_{i} v_{i} \lambda_{i}^{k}
$$

which is called the modal decomposition of the unforced response.

Modal contributions

- Since $\alpha=V^{-1} \times(0)$, one can also write

$$
x[k]=\sum_{i=1}^{n} \lambda_{i}^{k} v_{i} w_{i}^{\prime} x_{0}
$$

which shows that $\alpha_{i}=w_{i}^{\prime} x_{0}$ is the contribution of the initial condition to the i-th mode.

Diagonalization of the system

- If $T=V=$ matrix of eigenvectors, then $V^{-1} A V=\Lambda$ (prove by $A V=V \wedge$).
- Decoupled system for each mode.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

