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� 

Forced response and initial-conditions response 

Assume we want to study the output of a system starting at time t0, knowing the 
initial state x(t0) = x0, and the present and future input u(t), t ≥ t0. Let us study the 
following two cases instead: 

Initial-conditions response: 

xIC(t0) = x0,

uIC(t) = 0, t ≥ t0, 

→ yIC;


Forced response: �

xF(t0) = 0,

uF(t) = u(t), t ≥ t0, 

→ yF.


Clearly, x0 = xIC + xF, and u = uIC + uF, hence 

y = yIC + yF, 

that is, we can always compute the output of a linear system by adding the output 
corresponding to zero input and the original initial conditions, and the output 
corresponding to a zero initial condition, and the original input. 
In other words, we can study separately the effects of non-zero inputs and of non-zero 
initial conditions. The “complete” case can be recovered from these two. 
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� 

Initial-conditions response (DT)


Consider the case of zero input, i.e., u = 0; in this case, the state-space equations 
are written as the difference equations 

x [0] = x0 y [0] = C [0]x0 

x [1] = A[0] x [0] y [1] = C [1] A[0] x [0] 
x [2] = A[1] A[0] x [0] y [2] = C [2] A[1] A[0] x [0] 
. . .	 . . . 
x [k] = Φ[k, 0] x [0] y [k] = C [k] Φ[k, 0] x [0] 

where we defined the state transition matrix Φ[k, �] as 

Φ[k, �] =	
A[k − 1] A[k − 2] . . . A[l ], k > � ≥ 0 
I , k = � 
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� �� � 

� � 

Forced response with zero i.c. (DT) 

We need to compute the solution of x [k + 1] = Adx [k] + Bdu[k], x [0] = 0. 

By substitution, we get: 

x [k] = A[k − 1]x [k − 1] + B[k − 1]u[k − 1] 

= A[k − 1](A[k − 2]x [k − 2] + B[k − 1]u[k − 2]) + B[k − 1]u[k − 1] 

= Φ[k, 0] x [0] 
k 1−� 

+ Φ[k, i + 1]B[i ]u[i ]. 
i=0

=0 

In other words, x [k] = Γ[k, 0]U [k, 0], where ⎤⎡ 

Γ[k , 0] = Φ[k, 1]B[0] Φ[k, 2]B[1] . . . B[k − 1] , U = 
⎢⎢⎣ 

u[0] 
u[1] 
. . . 

u[k − 1] 

⎥⎥⎦ . 

The output is 
y [k] = C [k]Γ[k, 0]U [k, 0]. 
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Summary (DT)


In general, state/output trajectories of a DT state-space model can be 
computed as: 

x [k] = Φ[k, 0]x [0] + Γ[k, 0]U [k, 0], 

y [k] = C [k]Φ[k, 0]x [0] + C [k]Γ[k, 0]U [k, 0]. 

In general Φ[k, �] may not be invertible. In the cases in which it is, one can 
also compute x [0] as a function of x [k]. 
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Initial-conditions response (CT) 

Consider the case of zero input, i.e., u = 0; in this case, the state-space 
equations are written as 

d 
dt 

x(t) = A(t)x(t), x(t0) = x0; 

y(t) = C (t)x(t). 

Assume that the matrix function A : t �→ A(t) is sufficiently well behaved so

that there exists unique state/output signals x and y . (e.g., A is

piecewise-continuous).

Define a state transition function Φ(t, τ) such that, for all t, τ ∈ T,


∂ 
Φ(t, τ) = A(t)Φ(t, τ ),

∂t 

Φ(t, t) = I . 

The function Φ can in general be computed numerically, integrating a 
differential equation in n unknown functions, with n initial conditions 
(assuming x ∈ Rn). 
Then, x(t) = Φ(t, t0)x0, and y(t) = C (t)Φ(t, t0)x0. 
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Forced response with zero i.c. (CT) 

We need to integrate 

d 
x(t) = A(t)x(t) + B(t)u(t), x(t0) = 0,

dt


y(t) = C (t)x(t) + D(t)u(t)


.


Again, assume the input signal u and the matrix functions A and B are such 
that there exists a unique solution. 

Claim: the forced solution is � t 
x(t) = Φ(t, τ)B(τ )u(τ)dτ. 

t0 

The output is � t 
y = C (t) Φ(t, τ)B(τ)u(t) dτ + D(t)u(t). 

t0 
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Forced response with zero i.c. (CT) 2/2


Verify by substitution: clearly x(t0) = 0; moreover, � td d 
x(t) = Φ(t, τ)B(τ)u(τ) dτ = 

dt dt t0
� t
 ∂ 
∂t 

Φ(t, τ)B(τ)u(τ) dτ + [Φ(t, τ)B(τ )u(τ)]τ =t 
t0
� t


= A(t) Φ(t, τ)B(τ )u(τ) dτ + B(t)u(t) = A(t)x(t) + B(t)u(t). 
t0 

Similarly for the output. 
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Further properties of the state transition function


Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0). 

Look up on the lecture notes. 
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� � 

� 

The LTI case


In DT, if A[k] = A, B[k] = B, for all k ∈ T, then Φ[k, �] = Ak−�, and 
Γ[k , �] = Ak−1B, Ak−2B, . . . , B . 

in CT, if A(t) = A, and B(t) = B, for all k ∈ T, then

Φ(t, τ) = exp(A(t − τ)), where


+∞
1 1 1 

exp(M) := M i = I + M + M2 + M3 + . . . 
i ! 2 6 

i=0 

Easy to check that the matrix exponential satisfies the conditions for the 
state transition function. 
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Similarity Transformations


The choice of a state-space model for a given system is not unique. 

For example, let T be an invertible matrix, and set x = Tr , i.e., r = T −1x . 
This is called a similarity transformation. 

The standard state-space model can be written as


Tr+ = ATr + Bu


y = CTr + Du


i.e.,


r + = Ar + ˆ
(T −1AT )r + (T −1B)u = ˆ Bu 

y = (CT )r + Du = ˆ Du Cr + ˆ
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�
� 

Modal Coordinates


Is a state trajectory of the form x [k] = λk v (λ = 0) a valid solution of the �
state-space model, assuming u = 0? 

Since x [k + 1] = Ax [k], then λk+1v = Aλk v , i.e., (λI − A)v = 0: the 
proposed state trajectory is a valid solution if and only if v is (right) 
eigenvector of A, with eigenvalue λ. It will in fact be a solution of the system 
with initial condition x [0] = vi . 

Assume that A has n independent eigenvectors. Then, any initial condition 
can be written uniquely as a linear combination of eigenvectors, i.e., 
x [0] = n

i=1 αi vi . The solution of the state-space model is then 

n

x [k] = αi vi λ
k
i , 

i=1 

which is called the modal decomposition of the unforced response. 
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� 

Modal contributions


Since α = V −1x(0), one can also write 

n

x [k] = λk
i vi wi

�x0, 
i=1 

which shows that αi = wi
�x0 is the contribution of the initial condition to the 

i-th mode. 
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Diagonalization of the system


If T = V = matrix of eigenvectors, then V −1AV = Λ (prove by AV = V Λ). 

Decoupled system for each mode. 
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