6.241 Dynamic Systems and Control

Lecture 7: State-space Models
Readings: DDV, Chapters 7,8

Emilio Frazzoli
Aeronautics and Astronautics
Massachusetts Institute of Technology

February 25, 2011

Outline

(1) State-space models

State of a system

We know that, if a system is causal, in order to compute its output at a given time t_{0}, we need to know "only" the input signal over $\left(-\infty, t_{0}\right.$]. (Similarly for DT systems.)
This is a lot of information. Can we summarize it with something more manageable?

Definition (state)

The state $x\left(t_{1}\right)$ of a causal system at time t_{1} is the information needed, together with the input u between times t_{1} and t_{2}, to uniquely predict the output at time t_{2}, for all $t_{2} \geq t_{1}$.

In other words, the state of the system at a given time summarizes the whole history of the past inputs $-\infty$, for the purpose of predicting the output at future times.

Usually, the state of a system is a vector in some Euclidean space \mathbb{R}^{n}.

Dimension of a system

The choice of a state for a system is not unique (in fact, there are infinite choices, or realizations).

However, there are come choices of state which are preferable to others; in particular, we can look at "minimal" realizations.

Definition (Dimension of a system)

We define the dimension of a causal system as the minimal number of variables sufficient to describe the system's state (i.e., the dimension of the smallest state vector).

We will deal mostly with finite-dimensional systems, i.e., systems which can be described with a finite number of variables.

Some remarks on infinite-dimensional systems

Even though we will not address infinite-dimensional systems in detail, some examples are very useful:

- (CT) Time-delay systems: Consider the very simple time delay S_{T}, defined as a continuous-time system such that its input and outputs are related by

$$
y(t)=u(t-T)
$$

In order to predict the output at times after t, the knowledge of the input for times in $(t-T, t]$ is necessary.

- PDE-driven systems: Many systems in engineering, arising, e.g., in structural control and flow control applications, can only be described exactly using a continuum of state variables (stress, displacement, pressure, temperature, etc.). These are infinite-dimensional systems.
In order to deal with infinite-dimensional systems, approximate discrete models are often used to reduce the dimension of the state.

State-space model

Finite-dimensional linear systems can always be modeled using a set of differential (or difference) equations as follows:

Definition (Continuous-time State-Space Models)

$$
\begin{aligned}
\frac{d}{d t} x(t) & =A(t) x(t)+B(t) u(t) \\
y(t) & =C(t) x(t)+D(t) u(t)
\end{aligned}
$$

Definition (Discrete-time State-Space Models)

$$
\begin{aligned}
x[k+1] & =A[k] x[k]+B[k] u[k] \\
y[k] & =C[k] x[k]+D[k] u[k]
\end{aligned}
$$

The matrices appearing in the above formulas are in general functions of time, and have the correct dimensions to make the equations meaningful.

LTI State-space model

If the system is Linear Time-Invariant (LTI), the equations simplify to:

Definition (Continuous-time State-Space Models)

$$
\begin{aligned}
\frac{d}{d t} x(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

Definition (Discrete-time State-Space Models)

$$
\begin{aligned}
x[k+1] & =A x[k]+B u[k] \\
y[k] & =C x[k]+D u[k] ;
\end{aligned}
$$

In the above formulas, $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R}$, and n is the dimension of the state vector.

Example of DT system: accumulator

- Consider a system such that

$$
y[k]=\sum_{i=-\infty}^{k-1} u[i]
$$

- Notice that we can rewrite the above as

$$
y[k]=\left(\sum_{i=-\infty}^{k-2} u[i]\right)+u[k-1]=y[k-1]+u[k-1] .
$$

- In other words, we can set $x[k]=y[k]$ as a state, and get the following state-space model:

$$
\begin{aligned}
x[k+1] & =x[k]+u[k] \\
y[k] & =x[k]
\end{aligned}
$$

- Let $x[0]=y[0]=0$, and $u[k]=1$; we can solve by repeated substitution:

$$
\begin{aligned}
x[1]=x[0]+u[0]=0+1=1, & y[1]=x[1]=1 ; \\
x[2]=x[1]+u[1]=1+1=2, & y[2]=x[2]=2 ; \\
& \cdots \\
x[k]=x[k-1]+u[k-1]=k-1+1=k, & y[k]=x[k]=k ;
\end{aligned}
$$

Finite-dimensional Linear Systems $1 / 2$

- Recall the definition of a linear system. Essentially, a system is linear if the linear combination of two inputs generates an output that is the linear combination of the outputs generated by the two individual inputs.
- The definition of a state allows us to summarize the past inputs into the state, i.e.,

$$
u(t),-\infty \leq t \leq+\infty \quad \Leftrightarrow \quad\left\{\begin{array}{l}
x\left(t_{0}\right), \\
u(t), \quad t \geq t_{0}
\end{array}\right.
$$

(similar formulas hold for the DT case.)

- We can extend the definition of linear systems as well to this new notion.

Finite-dimensional Linear Systems 2/2

Definition (Linear system (again))

A system is said a Linear System if, for any $u_{1}, u_{2}, t_{0}, x_{0,1}, x_{0,2}$, and any two real numbers α, β, the following are satisfied:

$$
\begin{gathered}
\left\{\begin{array}{l}
x\left(t_{0}\right)=x_{0,1}, \\
u(t)=u_{1}(t),
\end{array} \quad t \geq t_{0},\right.
\end{gathered} \rightarrow \quad y_{1},\left\{\begin{array}{l}
\left\{\begin{array}{l}
x\left(t_{0}\right)=x_{0,2}, \\
u(t)=u_{2}(t), \quad t \geq t_{0},
\end{array} \quad \rightarrow \quad y_{2},\right. \\
\left\{\begin{array}{l}
x\left(t_{0}\right)=\alpha x_{0,1}+\beta x_{0,2}, \\
u(t)=\alpha u_{1}(t)+\beta u_{2}(t), \quad t \geq t_{0},
\end{array} \rightarrow \alpha y_{1}+\beta y_{2} .\right.
\end{array}\right.
$$

Similar formulas hold for the discrete-time case.

Forced response and initial-conditions response

- Assume we want to study the output of a system starting at time t_{0}, knowing the initial state $x\left(t_{0}\right)=x_{0}$, and the present and future input $u(t), t \geq t_{0}$. Let us study the following two cases instead:
- Initial-conditions response:

$$
\left\{\begin{array}{l}
x_{\mathrm{IC}}\left(t_{0}\right)=x_{0}, \\
u_{\mathrm{IC}}(t)=0, \quad t \geq t_{0},
\end{array} \rightarrow \quad y_{\mathrm{IC}} ;\right.
$$

- Forced response:

$$
\left\{\begin{array}{l}
x_{\mathrm{F}}\left(t_{0}\right)=0, \\
u_{\mathrm{F}}(t)=u(t), \quad t \geq t_{0},
\end{array} \rightarrow \quad y_{\mathrm{F}} .\right.
$$

- Clearly, $x_{0}=x_{\mathrm{IC}}+x_{\mathrm{F}}$, and $u=u_{\mathrm{IC}}+u_{\mathrm{F}}$, hence

$$
y=y_{\mathrm{IC}}+y_{\mathrm{F}}
$$

that is, we can always compute the output of a linear system by adding the output corresponding to zero input and the original initial conditions, and the output corresponding to a zero initial condition, and the original input.

- In other words, we can study separately the effects of non-zero inputs and of non-zero initial conditions. The "complete" case can be recovered from these two.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

