6.241 Dynamic Systems and Control

Lecture 5: Matrix Perturbations
Readings: DDV, Chapter 5

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
February 16, 2011

Outline

(1) Matrix Perturbations

Introduction

- Important issues in engineering, and in systems and control science in particular, concern the sensitivity of computations, solution algorithms, design methods, to uncertainty in the input parameters.
- For example: What is the smallest perturbation (e.g., in terms of 2-norm) that makes a matrix singular? What is the impact on the solution of a least-square problem of uncertainty in the data? etc.

Additive Perturbation

Theorem (Additive Perturbation)

Let $A \in \mathbb{C}^{m \times n}$ be a matrix with full column rank $(=n)$. Then

$$
\min _{\Delta \in \mathbb{C}^{m \times n}}\left\{\|\Delta\|_{2}: A+\Delta \text { has rank }<n\right\}=\sigma_{\min }(A) .
$$

Proof:

- If $A+\Delta$ has rank $<n$, then there exists x, with $\|x\|_{2}=1$, such that $(A+\Delta) x=0$, i.e., $\Delta x=-A x$.
- In terms of norms, $\|\Delta\|_{2} \geq\|\Delta x\|_{2}=\|A x\|_{2} \geq \sigma_{\min }(A)$
- To prove that the bound is tight, let us construct a Δ that achieves it.
- Choose $\Delta=-\sigma_{\min } u_{\min } v_{\text {min }}^{\prime}$. Clearly, $\|\Delta\|=\sigma_{\text {min }}$.
- $(A+\Delta) v_{\text {min }}=\left(\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{\prime}\right) v_{\text {min }}-\sigma_{\min } u_{\min } v_{\text {min }}^{\prime} v_{\text {min }}=$ $\sigma_{\text {min }} u_{\text {min }}-\sigma_{\text {min }} u_{\text {min }}=0$.

Multiplicative Perturbation

Theorem (Small Gain)

Let $A \in \mathbb{C}^{m \times n}$:

$$
\min _{\Delta \in \mathbb{C}^{n} \times n}\left\{\|\Delta\|_{2}:(I-A \Delta) \text { is singular }\right\}=\frac{1}{\sigma_{\max }(A)},
$$

i.e., $(I-A \Delta)$ is non-singular if $\|A\|_{2}\|\Delta\|_{2}<1$.

Proof:

- If $I-A \Delta$ is singular, then there exists $x \neq 0$, such that $(I-A \Delta) x=0$.
- Hence, $\|x\|_{2}=\|A \Delta x\|_{2} \leq\|A\|_{2}\|\Delta x\|_{2}=\sigma_{\max }(A)\|\Delta x\|_{2}$,
- that is, $\Delta_{2} \geq \frac{\|\Delta x\|_{2}}{\|x\|_{2}} \geq \frac{1}{\sigma_{\max }(A)}$.
- To show that the bound is tight, choose $\Delta=\frac{1}{\sigma_{\max }(A)} v_{\max } u_{\max }^{\prime}$. Clearly $\|\Delta\|_{2}=1 / \sigma_{\max }(A)$, and pick $x=u_{\max }$.
- Then, $(I-A \Delta) x=u_{\max }-\frac{1}{\sigma_{\max }(A)} A v_{\max }=u_{\max }-u_{\max }=0$.

Perturbations measured in the Frobenius norm

- A useful inequality: $\|A\|_{F} \geq\|A\|_{2}$, for any $A \in \mathbb{C}^{m \times n}$.

$$
\|A\|_{\mathrm{F}}^{2}=\operatorname{Trace}\left(A^{\prime} A\right)=\sum_{i=1}^{n} \sigma_{i}^{2} \geq \sigma_{\max }^{2}=\|A\|_{2}^{2}
$$

- Note: a rank-one matrix $A_{1}=u v^{\prime} \neq 0$ only has only one non-zero singular value. Hence, its Frobenius norm is equal to its induced 2-norm.
- Since the matrices Δ used in the proofs of the perturbation bounds were both rank-one, the results extends to the Frobenius norm case:

Theorem (Additive Perturbation)

$$
\min _{\Delta \in \mathbb{C}^{m \times n}}\left\{\|\Delta\|_{\mathrm{F}}: A+\Delta \text { has rank }<n\right\}=\sigma_{\min }(A) .
$$

Theorem (Small Gain)

$$
\min _{\Delta \in \mathbb{C}^{n \times n}}\left\{\|\Delta\|_{F}:(I-A \Delta) \text { is singular }\right\}=\frac{1}{\sigma_{\max }(A)},
$$

Total Least Squares

- In the least squares estimation problem, we considered an inconsistent system of equations $y=A x$ (where A has more rows than columns).
- In order to compute a solution, we introduced a notion of "measurement error" $e=y-A x$, and looked for a solution that is compatible with the smallest measurement error.
- A more general model (total least squares) also considers a notion of "modeling error," i.e., looks for a solution x of

$$
y=(A+\Delta) x+e,
$$

that minimizes $\|\Delta\|_{F}+\|e\|_{2}=\|[\Delta, e]\|_{F}$.

Total Least Squares Solution

- Rewrite the problem in block matrix form:

$$
\min _{\|\Delta\|_{F+}+\|e\|_{2}}\left(\left[\begin{array}{ll}
A & -y
\end{array}\right]+\left[\begin{array}{ll}
\Delta & e
\end{array}\right]\right)\left[\begin{array}{l}
x \\
1
\end{array}\right]=0,
$$

i.e.,

$$
\min _{\|\hat{\Delta}\|_{F}}(\hat{A}+\hat{\Delta}) \hat{x}=0
$$

- For this problem to have a valid solution, $\hat{A}+\hat{\Delta}$ must be singular $(\hat{x} \neq 0)$.
- This is an additive perturbation problem, in the Frobenius norm... we know the smallest perturbation is $\hat{\Delta}=-\sigma_{\text {min }}(\hat{A}) u_{\text {min }} v_{\text {min }}^{\prime}$.
- The total least squares solution is obtained by $\hat{x}=v_{\min }$, rescaled so that the last entry is equal to 1 , i.e., $\left[\begin{array}{ll}x^{\prime} & 1\end{array}\right]=\alpha v_{\text {min }}^{\prime}$.

Conditioning of Matrix Inversion

- Consider the matrix $A=\left[\begin{array}{cc}100 & 100 \\ 100.2 & 100\end{array}\right]$. Its inverse is $A^{-1}=\left[\begin{array}{cc}-5 & 5 \\ 5.01 & -5\end{array}\right]$.
- Consider the perturbed matrix $A+\delta A=\left[\begin{array}{cc}100 & 100 \\ 100.1 & 100\end{array}\right]$. Its inverse is

$$
(A+\delta A)^{-1}=\left[\begin{array}{cc}
-10 & 10 \\
10.01 & -10
\end{array}\right]
$$

- A 0.1% change in one of the entries of A results in a 100% change in the entries of A^{-1} ! Similarly for the solution of linear systems of the form $A x=y$.
- Under what conditions does this happen? i.e., under what conditions is the inverse of a matrix extremely sensitive to small perturbations in the elements of the matrix?

Condition number

- Differentiate $A^{-1} A=I$. We get $d\left(A^{-1}\right) A+A^{-1} d A=0$.
- Rearranging, and taking the norm:

$$
\left\|d\left(A^{-1}\right)\right\|=\left\|-A^{-1} d A A^{-1}\right\| \leq\left\|A^{-1}\right\|^{2}\|d A\|
$$

- That is,

$$
\frac{\left\|d\left(A^{-1}\right)\right\|}{\left\|A^{-1}\right\|} \leq\left\|A^{-1}\right\|\|A\| \frac{\|d A\|}{\|A\|}
$$

- The quantity $K(A)=\left\|A^{-1}\right\|\|A\|$, called the condition number of the matrix A gives a bound on the relative change on A^{-1} given by a perturbation on A.
- If we are considering the induced 2-norm,

$$
K(A)=\left\|A^{-1}\right\|\|A\|=\sigma_{\max }(A) / \sigma_{\min }(A) .
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

