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Unitary Matrices


A square matrix U ∈ Cn×n is unitary if U �U = UU � = I . 

A square matrix U ∈ Rn×n is orthogonal if UT U = UUT = I . 

Properties: 

If U is a unitary matrix, then �Ux�2 = �x�2, for all x ∈ Cn . 

If S = S � is a Hermitian matrix, then there exists a unitary matrix U such that 
U �SU is a diagonal matrix. 1 

For any matrix A ∈ Rm×n, both A�A ∈ Rn×n , AA� ∈ Rm×m are Hermitian ⇒
can be diagonalized by unitary matrices. 

For any matrix A, the eigenvalues of A�A and AA� are always real 2 and 
non-negative 3 (in other words, A�A and AA� are positive definite). 

1S = S � ⇔ �Sx , y� = �x , Sy�. Let v1 be an eigenvector of S , and let M1 = R(v1)⊥. If 
u ∈ M1, then so is Su: �Su, v1� = �u, Sv1� = �u, λ1v1� = 0. All other eigenvectors must be in 
M1. Finite induction gets the result. 

2Assuming �v1, v1� = 1, λ1 = �Sv1, v1� = �v1, Sv1� = �Sv1, v1�� = λ�
1 

30 < �Av1, Av1� = v �A�Av1 = λ1v1
�v1.1
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Singular Value Decomposition


Theorem (SVD) 

Any matrix A ∈ Cm×n can be decomposed as A = UΣV , where U ∈ Cm×m and 
V ∈ Cn×n are unitary matrices. The matrix Σ ∈ Rm×n is “diagonal,” with 
non-negative elements on the main diagonal. The non-zero elements of Σ are 
called the singular values of A, and satisfy σi = 

√
i -th eigenvalue of A�A. 

Proof (assuming rank(A) = m): 

Since AA� is Hermitian, there exist a diagonal matrix

Λ = diag(λ1, λ2, . . . , λm) > 0 such that UΛU � = AA�.


Write Λ = Σ2 = diag(σ2, σ2, . . . , σ2 )
1 1 2 m

Define V1
� := Σ−1U �A ∈ Rm×n . Clearly, V1

�V1 = Σ−1U �AA�UΣ−1 = I m×m .1 1 1 

Construct V = [V1, V2] ∈ Cn×n by choosing the columns in V2 so that V is 
unitary, and Σ = [Σ1, 0] ∈ Rn×n, by padding with zeroes. 

Hence, ΣV � = Σ1V1
� + 0V2

� = U �A, i.e., A = UΣV �. 
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Singular Vectors 

If U and V are written as sequences of column vectors, i.e., 
U = u1, u2, . . . , um and V = v1, v2, . . . , vn , then 

r

A = UΣV � = σi ui vi
� 

i=1 

The columns of U are called the left singular vectors, and the columns of V

are called the right singular vectors.

Note:


Ax can be written as the weighted sum of the left singular vectors, where the 
weights are given by the projections of x onto the right singular vectors: 

r

Ax = σi ui (vi
�x), 

i=1 

The range of A is given by the span of the first r vectors in U

The rank of A is given by r ;

The nullspace of A is given the span of the last (n − r) vectors in V .
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Induced 2-norm computation


Theorem (Induced 2-norm) 

�A�2 = sup 
x �=0 

�Ax�2 

�x�2 
= σmax(A). 

Proof: 

�Ax�2 �UΣV �x�2 �ΣV �x�2 
sup = sup = sup = 
x=0 x=0 x=0� �x�2 � �x�2 � �x�2 �� �1/2 

sup 
�Σy�2 

= sup 
�Σy�2 

= sup ��in 
=1 σi 

2|yi |�21/2 
≤ σmax(A). 

y=0� �Vy�2 y=0� �y�2 y =0� n
i=1 |yi |2 

Assuming σmax = σ1, the supremum is attained for y = (1, 0, . . . , 0). This 
corresponds to x = v1, and Av1 = σu1 
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Minimal amplification


Theorem 

Given A ∈ Cm×n, with rank(A) = n, 

inf 
x �=0 

�Ax�2 

�x�2 
= σn(A). 

Proof: 

inf 
x �=0 

�Ax�2 

�x�2 
= inf 

x �=0 

�UΣV �x�2 

�x�2 
= inf 

x �=0 

�ΣV �x�2 

�x�2 
= 

�Σy�2 �Σy�2 

��
i
n 
=1 σi 

2 yi 
2 
�1/2 

inf = inf = inf �� | |�1/2 
≥ σmin(A). 

y=0� �Vy�2 y =0� �y�2 y=0� n
i=1 |yi |2 

Assuming σmin = σn, the supremum is attained for y = (0, . . . , 0, 1). This 
corresponds to x = vn, and Avn = σun 
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Frobenius norm computation


Theorem 

�A�F = 

� 
r� 

i=1 

σi (A)
2 

�1/2 

Proof: 

�A�F = 

⎛ ⎝ 
n� m� 

|aij |2 

⎞ ⎠ 

1/2 

= (Trace(A�A))
1/2 

= (Trace(V Σ�U �UΣV �))1/2 
= 

j=1 i=1 � �1/2r� �1/2 � �1/2 � 
Trace(V �V Σ2) = Trace(Σ2) = σi 

2 

i=1 
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