6.241 Dynamic Systems and Control

Lecture 4: Singular Values
 Readings: DDV, Chapter 4

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
February 14, 2011

Outline

(1) Singular Values
(2) Norm computations through singular values

Unitary Matrices

- A square matrix $U \in \mathbb{C}^{n \times n}$ is unitary if $U^{\prime} U=U U^{\prime}=I$.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $U^{T} U=U U^{T}=I$.
- Properties:
- If U is a unitary matrix, then $\|U x\|_{2}=\|x\|_{2}$, for all $x \in \mathbb{C}^{n}$.
- If $S=S^{\prime}$ is a Hermitian matrix, then there exists a unitary matrix U such that $U^{\prime} S U$ is a diagonal matrix. ${ }^{1}$
- For any matrix $A \in \mathbb{R}^{m \times n}$, both $A^{\prime} A \in \mathbb{R}^{n \times n}, A A^{\prime} \in \mathbb{R}^{m \times m}$ are Hermitian \Rightarrow can be diagonalized by unitary matrices.
- For any matrix A, the eigenvalues of $A^{\prime} A$ and $A A^{\prime}$ are always real ${ }^{2}$ and non-negative ${ }^{3}$ (in other words, $A^{\prime} A$ and $A A^{\prime}$ are positive definite).
${ }^{1} S=S^{\prime} \Leftrightarrow\langle S x, y\rangle=\langle x, S y\rangle$. Let v_{1} be an eigenvector of S, and let $M_{1}=\mathcal{R}\left(v_{1}\right)^{\perp}$. If $u \in M_{1}$, then so is $S u:\left\langle S u, v_{1}\right\rangle=\left\langle u, S v_{1}\right\rangle=\left\langle u, \lambda_{1} v_{1}\right\rangle=0$. All other eigenvectors must be in M_{1}. Finite induction gets the result.
${ }^{2}$ Assuming $\left\langle v_{1}, v_{1}\right\rangle=1, \lambda_{1}=\left\langle S v_{1}, v_{1}\right\rangle=\left\langle v_{1}, S v_{1}\right\rangle=\left\langle S v_{1}, v_{1}\right\rangle^{\prime}=\lambda_{1}^{\prime}$
${ }^{3} 0<\left\langle A v_{1}, A v_{1}\right\rangle=v_{1}^{\prime} A^{\prime} A v_{1}=\lambda_{1} v_{1}^{\prime} v_{1}$.

Singular Value Decomposition

Theorem (SVD)

Any matrix $A \in \mathbb{C}^{m \times n}$ can be decomposed as $A=U \Sigma V$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices. The matrix $\Sigma \in \mathbb{R}^{m \times n}$ is "diagonal," with non-negative elements on the main diagonal. The non-zero elements of Σ are called the singular values of A, and satisfy $\sigma_{i}=\sqrt{i-t h}$ eigenvalue of $A^{\prime} A$.

Proof (assuming $\operatorname{rank}(A)=m$):

- Since $A A^{\prime}$ is Hermitian, there exist a diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)>0$ such that $U \Lambda U^{\prime}=A A^{\prime}$.
- Write $\Lambda=\Sigma_{1}^{2}=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{m}^{2}\right)$
- Define $V_{1}^{\prime}:=\Sigma_{1}^{-1} U^{\prime} A \in \mathbb{R}^{m \times n}$. Clearly, $V_{1}^{\prime} V_{1}=\Sigma_{1}^{-1} U^{\prime} A A^{\prime} U \Sigma_{1}^{-1}=I^{m \times m}$.
- Construct $V=\left[V_{1}, V_{2}\right] \in \mathbb{C}^{n \times n}$ by choosing the columns in V_{2} so that V is unitary, and $\Sigma=\left[\Sigma_{1}, 0\right] \in \mathbb{R}^{n \times n}$, by padding with zeroes.
- Hence, $\Sigma V^{\prime}=\Sigma_{1} V_{1}^{\prime}+0 V_{2}^{\prime}=U^{\prime} A$, i.e., $A=U \Sigma V^{\prime}$.

Singular Vectors

- If U and V are written as sequences of column vectors, i.e., $U=\left[u_{1}, u_{2}, \ldots, u_{m}\right]$ and $V=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$, then

$$
A=U \Sigma V^{\prime}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\prime}
$$

- The columns of U are called the left singular vectors, and the columns of V are called the right singular vectors.
- Note:
- Ax can be written as the weighted sum of the left singular vectors, where the weights are given by the projections of x onto the right singular vectors:

$$
A x=\sum_{i=1}^{r} \sigma_{i} u_{i}\left(v_{i}^{\prime} x\right)
$$

- The range of A is given by the span of the first r vectors in U
- The rank of A is given by r;
- The nullspace of A is given the span of the last $(n-r)$ vectors in V.

Outline

Cingular Values
(2) Norm computations through singular values

Induced 2-norm computation

Theorem (Induced 2-norm)

$$
\|A\|_{2}=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{\max }(A) .
$$

Proof:

$$
\begin{aligned}
\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}= & \sup _{x \neq 0} \frac{\left\|U \Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}}=\sup _{x \neq 0} \frac{\left\|\Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}}= \\
& \sup _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|V y\|_{2}}=\sup _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|y\|_{2}}=\sup _{y \neq 0} \frac{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\left|y_{i}\right|^{2}\right)^{1 / 2}}{\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2}} \leq \sigma_{\max }(A) .
\end{aligned}
$$

Assuming $\sigma_{\max }=\sigma_{1}$, the supremum is attained for $y=(1,0, \ldots, 0)$. This corresponds to $x=v_{1}$, and $A v_{1}=\sigma u_{1}$

Minimal amplification

Theorem

Given $A \in \mathbb{C}^{m \times n}$, with $\operatorname{rank}(A)=n$,

$$
\inf _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{n}(A) .
$$

Proof:

$$
\begin{aligned}
\inf _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}= & \inf _{x \neq 0} \frac{\left\|U \Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}}=\inf _{x \neq 0} \frac{\left\|\Sigma V^{\prime} x\right\|_{2}}{\|x\|_{2}}= \\
& \inf _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|V y\|_{2}}=\inf _{y \neq 0} \frac{\|\Sigma y\|_{2}}{\|y\|_{2}}=\inf _{y \neq 0} \frac{\left(\sum_{i=1}^{n} \sigma_{i}^{2}\left|y_{i}\right|^{2}\right)^{1 / 2}}{\left(\sum_{i=1}^{n}\left|y_{i}\right|^{2}\right)^{1 / 2}} \geq \sigma_{\min }(A)
\end{aligned}
$$

Assuming $\sigma_{\min }=\sigma_{n}$, the supremum is attained for $y=(0, \ldots, 0,1)$. This corresponds to $x=v_{n}$, and $A v_{n}=\sigma u_{n}$

Frobenius norm computation

Theorem

$$
\|A\|_{\mathrm{F}}=\left(\sum_{i=1}^{r} \sigma_{i}(A)^{2}\right)^{1 / 2}
$$

Proof:

$$
\begin{array}{r}
\|A\|_{\mathrm{F}}=\left(\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right)^{1 / 2}=\left(\operatorname{Trace}\left(A^{\prime} A\right)\right)^{1 / 2}=\left(\operatorname{Trace}\left(V \Sigma^{\prime} U^{\prime} U \Sigma V^{\prime}\right)\right)^{1 / 2}= \\
\left(\operatorname{Trace}\left(V^{\prime} V \Sigma^{2}\right)\right)^{1 / 2}=\left(\operatorname{Trace}\left(\Sigma^{2}\right)\right)^{1 / 2}=\left(\sum_{i=1}^{r} \sigma_{i}^{2}\right)^{1 / 2}
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

