6.241 Dynamic Systems and Control
 Lecture 3: Least Square Solutions of Linear Problems

Readings: DDV, Chapter 3

Emilio Frazzoli

Aeronautics and Astronautics
Massachusetts Institute of Technology
February 9, 2011

Outline

(1) Least Squares Control

Least Squares Control

- Consider a system of m equations in n unknowns, with $m<n$, of the form ${ }^{1}$

$$
y=A^{\prime} x
$$

- In these conditions, there are in general many possible values for x that make $A^{\prime} x=y$. It may be of interest to find such a solution x of minimum (weighted) Euclidean norm, i.e., of minimum $\|x\|$.

Example

This situation occurs often in the context of control. For example, consider the simple discrete-time system $x[i+1]=a x[i]+b u[i]$, with initial condition $x[0]=0$. It is desired to bring this system to $x[N]=y$, while minimizing the cost $\sum_{i=1}^{N}|u[i]|^{2}$. This problem can be written as

$$
\min _{u}\|u\|^{2}, \quad \text { s.t. } y=\left[b, a b, a^{2}, \ldots .\right][u[N-1], u[N-2], \ldots]^{\prime}
$$

[^0]
Constructing all possible solutions

- It turns out that a $\check{x}=A\left(A^{\prime} A\right)^{-1} y$ is a solution. (Check by substitution).
- However let the null space of $A^{\prime}, \mathcal{N}\left(A^{\prime}\right)$, be the subspace containing all solutions of the homogeneous equation $A^{\prime} x=0$
- Then, if \check{x} is a solution of $y=A^{\prime} x$, then so is $\check{x}+x_{h}$, where $x_{h} \in \mathcal{A}$.
- In addition, should x_{1} and x_{2} be two solutions of $y=A^{\prime} x$, then their difference must be in $\mathcal{N}(A)$.
- The trick is again that of finding among all such solutions the one with minimum norm-which is in fact \check{x}.

A general formulation

- Consider the formulation of the problem in terms of Gram product: $y=\prec A, x \succ$.
- Let x be a solution of $y=\prec A, x \succ$. Decompose it into its projection onto $\mathcal{R}(A)$ and on its orthogonal component, i.e., $x=x_{A}+x_{A^{\perp}}$.
- Hence $x_{A}=A \alpha, x_{A^{\perp}}=x-x_{A}$. Since it must be

$$
\left\langle a_{i}, x-A \alpha\right\rangle=0, \quad i=1, \ldots, n
$$

i.e.,

$$
\prec A, x-A \alpha \succ=0 .
$$

With some algebra, we get

$$
\alpha=\prec A, A \succ^{-1} \prec A, x \succ,
$$

and finally

$$
x_{A}=A \prec A, A \succ^{-1} \prec A, x \succ=A \prec A, A \succ^{-1} y .
$$

- Since $\|x\|^{2}=\left\|x_{A}\right\|^{2}+\left\|x_{A^{\perp}}\right\|^{2}$, it is clear that one would choose $x_{A^{\perp}}=0$, and hence $\check{x}=x_{A}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ We use the notation $y=A^{\prime} \times$ so that A is still a "tall" matrix columns are possibly infinite-dimensional.

