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Least Squares Estimation


Consider an system of m equations in n unknown, with m > n, of the form 

y = Ax . 

Assume that the system is inconsistent: there are more equations than 
unknowns, and these equations are non linear combinations of one another. 

In these conditions, there is no x such that y − Ax = 0. However, one can 
write e = y − Ax , and find x that minimizes �e�. 

In particular, the problem


min �e�2 = min �y − Ax�2

x x 

is a least squares problem. The optimal x is the least squares estimate. 
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Computing the Least-Square Estimate


The set M := {z ∈ Rm : z = Ax , x ∈ Rn} is a subspace of Rm, called the 
range of A, R(A), i.e., the set of all vectors that can be obtained by linear 
combinations of the columns of A. 
Recall the projection theorem. Now we are looking for the element of M that 
is “closest” to y , in terms of 2-norm. We know the solution is such that 

e = (y − Ax̂) ⊥ R(A). 

In particular, if ai is the i-th column of A, it is also the case that 

(y − Ax̂) ⊥ R(A) ⇔ ai
�(y − Ax̂) = 0, i = 1, . . . , n 

A�(y − Ax̂) = 0 

A�Ax̂ = A�y 

A�A is a n × n matrix; is it invertible? It if were, then at this point it is easy 
to recover the least-square solution as 

x̂ = (A�A)−1A�y . 

E. Frazzoli (MIT) Lecture 2: Least Squares Estimation Feb 7, 2011 4 / 9 



The Gram product


Let us take a more abstract look at this problem, e.g., to address the case 
that the data vector y is infinite-dimensional. 

Given an array of nA vectors A = [a1| . . . |anA ], and an array of nB vectors 
B = [b1| . . . |bnB ], both from an inner vector space V , define the Gram 
Product � A, B � as a nA × nB matrix such that its (i , j) entry is �ai , bj �. 

For the usual Euclidean inner product in an m-dimensional space, 

� A, B �= A�B. 

Symmetry and linearity of the inner product imply symmetry and linearity of 
the Gram product. 
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The Least Squares Estimation Problem 

Consider again the problem of computing


min � �� � 
� = min y�.


x∈Rn 
� y − Ax 

ŷ∈R(A) 
�y − ˆ

e 

y can be an infinite-dimensional vector—as long as n is finite. 

We assume that the columns of A = [a1, a2, . . . , an] are independent. 

Lemma (Gram matrix) 

The columns of a matrix A are independent ⇔ � A, A � is invertible. 

Proof— If the columns are dependent, then there is η = 0 such that 
Aη = j aj ηj = 0. But then j �ai , aj �ηj = 0 by the linearity of inner product.

That is, � A, A � η = 0, and hence � A, A � is not invertible.

Conversely, if � A, A � is not invertible, then � A, A � η = 0 for some η = 0. In �

other words η� � A, A � η = 0, and hence Aη = 0.
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The Projection theorem and least squares estimation 1 

y has a unique decomposition y = y1 + y2, where y1 ∈ R(A), and

y2 ∈ R⊥(A).


To find this decomposition, let y1 = Aα, for some α ∈ Rn . Then, ensure that 
y2 = y − y1 ∈ R⊥(A). For this to be true, 

�ai , y − Aα� = 0, i = 1, . . . , n, 

i.e.,

� A, y − Aα �= 0.


Rearranging, we get 
� A, A � α =� A, y � 

if the columns of A are independent,


α =� A, A �−1� A, y �
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The Projection theorem and least squares estimation 2 

Decompose e = e1 + e2 similarly (e1 ∈ R(A), and e2 ∈ R⊥(A)).


Note �e�2 = �e1�2 + �e2�2 .


Rewrite e = y − Ax as


e1 + e2 = y1 + y2 − Ax , 

i.e., 
e2 − y2 = y1 − e1 − Ax . 

Each side must be 0, since they are on orthogonal subspaces!


e2 = y2—can’t do anything about it.


e1 = y1 − Ax = A(α − x)—minimize by choosing x = α. In other words


x̂ =� A, A �−1� A, y � . 
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Examples 

If y , e ∈ Rm, and it is desired to minimize �e�2 = e�e = m
i=1 |ei |2, then 

x̂ = (A�A)−1A�y 

(If the columns of A are mutually orthogonal, A�A is diagonal, and inversion 
is easy) 

if y , e ∈ Rm, and it is desired to minimize e�Se, where S is a Hermitian, 
positive-definite matrix, then 

x̂ = (A�SA)−1A�Sy . 

Note that if S is diagonal, then e�Se = m
i=1 sii |ei |2, i.e., we are minimizing a 

weighted least square criterion. A large sii penalizes the i-th component of 
the error more relative to the others. 

In a general stochastic setting, the weight matrix S should be related to the 
noise covariance, i.e.,


S = (E [ee�])−1 .
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