6.241 Dynamic Systems and Control

Lecture 2: Least Square Estimation

Readings: DDV, Chapter 2

Emilio Frazzoli

Aeronautics and Astronautics Massachusetts Institute of Technology

February 7, 2011

E. Frazzoli (MIT)

Lecture 2: Least Squares Estimation

Feb 7, 2011 1 / 9

・ロッ ・ 一 ・ ・ ・ ・

Outline

Least Squares Estimation

・ロト ・部ト ・モト ・モト

Least Squares Estimation

• Consider an system of m equations in n unknown, with m > n, of the form

$$y = Ax$$
.

- Assume that the system is inconsistent: there are more equations than unknowns, and these equations are non linear combinations of one another.
- In these conditions, there is no x such that y Ax = 0. However, one can write e = y Ax, and find x that minimizes ||e||.
- In particular, the problem

$$\min_{x} \|e\|_2 = \min_{x} \|y - Ax\|_2$$

is a least squares problem. The optimal x is the least squares estimate.

Computing the Least-Square Estimate

- The set M := {z ∈ ℝ^m : z = Ax, x ∈ ℝⁿ} is a subspace of ℝ^m, called the range of A, R(A), i.e., the set of all vectors that can be obtained by linear combinations of the columns of A.
- Recall the projection theorem. Now we are looking for the element of *M* that is "closest" to *y*, in terms of 2-norm. We know the solution is such that

$$\mathsf{e} = (\mathsf{y} - A\hat{x}) \perp \mathcal{R}(A).$$

• In particular, if a_i is the *i*-th column of A, it is also the case that

$$(y - A\hat{x}) \perp \mathcal{R}(A) \quad \Leftrightarrow \quad a'_i(y - A\hat{x}) = 0, \qquad i = 1, \dots, n$$

 $A'(y - A\hat{x}) = 0$
 $A'A\hat{x} = A'y$

• A'A is a $n \times n$ matrix; is it invertible? It if were, then at this point it is easy to recover the least-square solution as

$$\hat{x} = (A'A)^{-1}A'y.$$

E. Frazzoli (MIT)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

The Gram product

- Let us take a more abstract look at this problem, e.g., to address the case that the data vector y is infinite-dimensional.
- Given an array of n_A vectors $A = [a_1| \dots |a_{n_A}]$, and an array of n_B vectors $B = [b_1| \dots |b_{n_B}]$, both from an inner vector space V, define the Gram Product $\prec A, B \succ$ as a $n_A \times n_B$ matrix such that its (i, j) entry is $\langle a_i, b_i \rangle$.
- For the usual Euclidean inner product in an *m*-dimensional space,

$$\prec A, B \succ = A'B.$$

• Symmetry and linearity of the inner product imply symmetry and linearity of the Gram product.

The Least Squares Estimation Problem

• Consider again the problem of computing

$$\min_{\mathbf{x}\in\mathbb{R}^n} \|\underbrace{\mathbf{y}-\mathbf{A}\mathbf{x}}_{e}\| = \min_{\hat{\mathbf{y}}\in\mathcal{R}(\mathbf{A})} \|\mathbf{y}-\hat{\mathbf{y}}\|.$$

- y can be an infinite-dimensional vector—as long as n is finite.
- We assume that the columns of $A = [a_1, a_2, \dots, a_n]$ are independent.

Lemma (Gram matrix)

The columns of a matrix A are independent $\Leftrightarrow \prec A, A \succ$ is invertible.

Proof— If the columns are dependent, then there is $\eta \neq 0$ such that $A\eta = \sum_j a_j \eta_j = 0$. But then $\sum_j \langle a_i, a_j \rangle \eta j = 0$ by the linearity of inner product. That is, $\prec A, A \succ \eta = 0$, and hence $\prec A, A \succ$ is not invertible. Conversely, if $\prec A, A \succ \eta = 0$, and hence $\prec A, A \succ \eta = 0$ for some $\eta \neq 0$. In other words $\eta' \prec A, A \succ \eta = 0$, and hence $A\eta = 0$.

The Projection theorem and least squares estimation 1

- y has a unique decomposition $y = y_1 + y_2$, where $y_1 \in \mathcal{R}(A)$, and $y_2 \in \mathcal{R}^{\perp}(A)$.
- To find this decomposition, let $y_1 = A\alpha$, for some $\alpha \in \mathbb{R}^n$. Then, ensure that $y_2 = y y_1 \in \mathcal{R}^{\perp}(A)$. For this to be true,

$$\langle a_i, y - A\alpha \rangle = 0, \quad i = 1, \dots, n,$$

i.e.,

$$\prec A, y - A\alpha \succ = 0.$$

• Rearranging, we get

$$\prec A, A \succ \alpha = \prec A, y \succ$$

• if the columns of A are independent,

$$\alpha = \prec A, A \succ^{-1} \prec A, y \succ$$

< ロ > < 同 > < 回 > < 回 >

The Projection theorem and least squares estimation 2

- Decompose $e = e_1 + e_2$ similarly $(e_1 \in \mathcal{R}(A)$, and $e_2 \in \mathcal{R}^{\perp}(A))$.
- Note $||e||^2 = ||e_1||^2 + ||e_2||^2$.
- Rewrite e = y Ax as

$$e_1 + e_2 = y_1 + y_2 - Ax,$$

i.e.,

$$e_2 - y_2 = y_1 - e_1 - Ax.$$

- Each side must be 0, since they are on orthogonal subspaces!
- $e_2 = y_2$ —can't do anything about it.

• $e_1 = y_1 - Ax = A(\alpha - x)$ —minimize by choosing $x = \alpha$. In other words

$$\hat{x} = \prec A, A \succ^{-1} \prec A, y \succ .$$

Examples

• If $y, e \in \mathbb{R}^m$, and it is desired to minimize $||e||^2 = e'e = \sum_{i=1}^m |e_i|^2$, then $\hat{x} = (A'A)^{-1}A'y$

(If the columns of A are mutually orthogonal, A'A is diagonal, and inversion is easy)

• if $y, e \in \mathbb{R}^m$, and it is desired to minimize e'Se, where S is a Hermitian, positive-definite matrix, then

$$\hat{x} = (A'SA)^{-1}A'Sy.$$

- Note that if S is diagonal, then $e'Se = \sum_{i=1}^{m} s_{ii}|e_i|^2$, i.e., we are minimizing a weighted least square criterion. A large s_{ii} penalizes the *i*-th component of the error more relative to the others.
- In a general stochastic setting, the weight matrix S should be related to the noise covariance, i.e.,

$$S = (E[ee'])^{-1}$$

ヘロト ヘ部ト ヘヨト ヘヨト

MIT OpenCourseWare http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.