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Homework 10 Solutions 

Exercise 23.1 a) We are given the single input LTI system: �    
0 1 0 

ẋ = Ax + bu , A =	 , b = 
0 0 

� �
1 

�
The solution is expressed by: 

 t 
x(t) = At  e x(0) + 

�
eA (t−τ )bu(τ)dτ 

0 

 Calculate exponent of matrix A by summing up the series and taking into account that An = 
0 , ∀n > 1.   

 t 
eAt  1

= I + At = 

�
0 1 

�
thus 

t 
e 

�  
At b = 

1 

�
b) the reachability matrix is:  

 
�
0 1 

b Ab = 
1 0 

�
The reachability matrix has rank 2, 

�
therefore

�
 the system is reachable. Now, we compute the 

reachability Grammian over an interval of length 1: � 	  1 1 1 
G = eA (T −τ )bb�eA (T −τ )�dτ = 3

0

�
2

1 
	 12 

�
The system is reachable thus the Grammian is invertible, so given any final state xf we can always 
find α such that xf = Gα. In particular 

  
1 
�

18 
α = √

2 −10 

�
c) According  to 23.5 define F T (t) = eA(1−t) b. Then u(t) = F (t)α is a control input that produces 
a trajectory that satisfies the terminal constraint xf . The control effort is given as: � T 

u2  dτ = α� G α 
0 

Infact this input corresponds to the minimum energy input required to reach xf in 1 second. This 
can be verified by solving the corresponding underconstrained least squares problem by means of 
the tools we learned at chapter 3. 

1 



d) First of all note that 
α� G α  = x�f G

−1 xf 

The Grammian as well as its inverse are symmetric matrices. If we want to maximize the energy, 
max{x� G−1

f xf | �xf � = 1}, we have to choose xf alligned with the singular vector corresponding to 
σmin(G). 

Exercise 23.4 Given : 

ẋ(t) = Ax + (b + δ)u, 

where δ ∈ Rn, and (A, b) is reachable. 
  a) Using the Theorem 22.2, in order to make the system unreachable, we have wTB = for some 

 eigenvectors  left wT of A. So, let λi is an eigenvalue of A and wi be the corresponding left 
eigenvectors. Then, using the theorem, we want to find δ which makes this eigenmode unreachable 
↔ wT 

i (b + δ) = 0. So, now we have 
wT δ T 
i  = −wi b. 

Then with this constraint, we would like to minimize �δ�2. Thus this can be cast into an optimiza
tion problem as follows: 

Find min δ
 

� 2 

s.t. wT

�
δ = −wT 

i i b. 

This is exactly in the form of the least square problem. Since both δ and b are real, even when   
    wi ∈ Cn, let w̃i = 

�
wR wI

i , where wR
i and wI

 i i are real and imaginary parts of wi respectively. 
Then the formulation still remains

�
 as a least square problem as follows: 

Find �δ�2 

s.t.  w̃T
i δ = w̃T 

i b. 

Then the solution to this problem is 

δ̂ = −�w̃i(w̃
T 
i w̃i)

−1 w̃T 
i b  

∴ min �δ�2 = ˆT ̂
δ δ

The last expression has to be minimized over all possible left eigenvectors of A. Note that the ex
pression does not depend on the norm of the eigenvectors, thus we can minimize over eigenvectors 
with unity norm. If all Jordan blocks of matrix A have different eigenvalues, this is a minimization 
over a finite set. In the other case we can represent eigenvectors corresponding to Jordan blocks 
with the same eigenvalues as a linear combination of eigenvectors corresponding to particular Jor
dan blocks, and then minimize over the coefficients in the linear combination. 
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b) NO. The explanation is as follows. With the control suggested, the closed loop dynamics is now 

ẋ = Ax + (b + δ)u 
T u = f x + v 

→ ẋ = (A + (b + δ)fT )x + (b + δ)v. 

Suppose that wi was the minimizing eigenvector of unity norm in part a). Then it is also an 
eigenvector of  matrix A + (b + δ)fT since wi is orthogonal to b + δ. Therefore feedback does not 
improve reachability. 

Exercise 24.5 a) The given system in general for all t ≥ 0 with u(k) = 0 ∀k ≥ 0 has the following 
expression for the output: 

y(t) = Σ CAt k 1Bu(k)−∞
k=

− −
−1

= CAtΣ−∞ A−k−1Bu(k)k=−1

since matrix A is stable. Note that because of stability of matrix A all of its eigenvalues are strictly 
within unit circle, and from Jordan decomposition we can see that 

lim Ak
2 = 0 

k→∞ 
� �

therefore x(−∞) does not influence x(0). Thus the above equation can be used in order to find 
x(0) as follows: 

�−∞ 
x(0) = A−k−1Bu(k). 

k=−1 

 b) Since the system is reachable, any ξ ∈ Rn can be achieved by some choice of an input of the 
above form. Also, since the system is reachable, the reachability matrix R has full row rank. As 
a consequence (RRT )−1 exists. Thus, in order to minimize the input energy, we have to solve the 
following familiar least square problem: 

Find min �u�2 
−∞ 

s.t. ξ = 
�

A−k−1Bu(k). 
k=−1 

Then the solution can be written in terms of the reachability matrix as follows: 

umin = RT (RRT )−1ξ, 

so that its square can be expressed as 

� 2 u� = uTmin minumin

 T RRT −1 T RRT RRT = ξ ((( ) ) ( )−1ξ 

= ξT (RRT )−1ξ, 
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where the last equality comes from the fact that inverse of a symmetric positive definite matrix is 
still symmetric positive definite. Also, the Controlability Gramian of DT systems P is 

�∞  
P  BBT = Ak (AT )k = 

k=0 

RRT , 

and is symmetric positive definite. Thus the square of the minimum energy, denoted as α1(ξ), can 
be expressed as 

   α1(ξ) = ξTP−1ξ = �Mξ�22 

 where M is a Hermitian square root matrix of P−1 which is still symmetric positive definite. 

c) Suppose some input umin results in x(0) = ξ, then the output for t ≥ 0 can be expressed as 

y(t) = Cx(t) = CAtξ. 

Thus the square of the energy of the output for t ≥ 0 can be written as 

�  y�22 = (yT⎡y) ⎡ ⎤




=


⎛ ⎤ ⎞T 

⎝⎜⎢⎣
 C C

ξ
 ⎢ A

 CA
 ⎥

⎟


 
 C
⎥


ξ

. . . . . . 

  
 

��∞  

⎦
k

⎣
  

⎦
= ξT

⎠
(AT ) CTCAk ξ 

t=0 

�
= ξTOTOξ 

Since the Observability Grammian of DT systems Q is 

�∞  
Q T k T k  = (A ) C CA = OTO, 

k=0 

the square of the energy of the output for t ≥ 0 , which we now denote α2(ξ), can be expressed as 
a function of ξ as follows: 

α2(ξ) ≡ ξT Qξ. 

Also, because of the symmetric positive definiteness of Q, α2(ξ) can be written as 

α2(ξ) = �Nξ�22, 

where N is a Hermitian square root matrix of Q. 

d) It can be argued as follows: 
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∞  −1

α = max{ 
�

(t)2 | 
�

u(t)2 y ≤ 1 , u(k) = 0 k  0
u 

t=0 t=−∞ 

∀ ≥ }

�−1  
= max{α (ξ) | ∃ u s.t.ξ = x(0) and u(t)2 

2 ≤ 1 , u(k) = 0 , ∀k  
ξ

≥ 0
	

t=

}
−∞ 

= max{α2(ξ) |
 min
ξ

�u 2 
2 ≤ 1

 
� }

= max{α2(ξ) | α1(ξ) ≤ 1}.

ξ	

e) Now, using the fact shown in d) and noting the fact that P−1 = MT M where M is Hermitian 
square root matrix which is invertible, we can compute α: 

α = max
ξ 

{α2(ξ) | α1(ξ) ≤ 1}

{�   = max Nξ�2 | �Mξ�22 set ξ = M−1
2  ≤ 1} l 

ξ 

= max )T
l 

{(M−1l OT OM−1l | �l�2 
2 ≤ 1} 

= σmax(OM−1) 

= λmax((M
−1  )T 

1 T 

OTOM−1) 

= λmax((M
− ) QM−1) 

= λmax(QM−1(M−1)T ) 

∴ α =	 λmax(Q P) 

Exercise 25.2 a) Given: 

s + f s + f	 1 
H1(s) = =	 , H2(s) = . 

(s + 4)3 s3 + 12s2 + 48s + 64 s − 2 

Thus the state-space realizations in controller canonical form for H1(s) and H2(s) are : 

	  
−12 −48 −64 1   

A1 = 

⎛
0  

 

⎞ ⎛⎝	 1 0
0

⎞⎠ , B1 = 
0 1

⎝ 0 ⎠ , C1 = 0 1 f 
0 

� �
, D1 = 0, 

and 

A2 = 2 , B2 = 1 , C2 = 1 , D2 = 0. 

Since f is not included in the controllability matrix for H1(s) with this realization, the controllabil
ity, which is equivalent to reachability for CT cases, the controllability is independent of the value 
of f .Thus, check the rank of the controllability matrix: 
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� � 

⎛	 ⎞ 
1 −12 96 

rank(C) = rank ⎝ 0 1 −12 ⎠ 

0 0 1 
= 3. 

Thus, the system with this realization is controllable. On the other hand, the observability matrix 
O for H1(s) contains f in it as follows: ⎛	 ⎞ 

0 1 f 
O = ⎝ 1 f 0 ⎠ . 

−12 + f −48 −60 

Thus, when f = 4, O decreases its rank from 3 to 2.

Now, let’s consider the state-space realization in observer canonical form for H1(s). It can be

expressed as follows:
⎛ ⎞ ⎛ ⎞ 

0 0 −64 f 
A1 = ⎝	 1 0 −48 ⎠ , B1 = ⎝ 1 ⎠ , C1 = 0 0 1 , D1 = 0. 

0 1 −12 0 

Since C1 does not contain f , the observability in independent of the value f . Thus check the rank 
of the observability matrix: 

⎛	 ⎞ 
0 0 1 

rank(O) = rank ⎝ 0 1 −12 ⎠ 

1 −12 96 
= 3. 

Thus thus the system with this realization is observable.

On the other hand, the controllability matrix contains f in it as follows:
⎛	 ⎞ 

f 0 −64 
C = ⎝ 1 f −48 ⎠ . 

0 1 f − 12 

Thus, again when f = 4, C decreases its rank from 3 to 2. 

b) Let H(s) be the cascaded system, H2(s)H1(s). Then, the augmented system H(s) has the 
following state-space representation: 
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⎧�  � � 
    ⎪⎪ ẋ⎨⎪⎪ 1 A1 0 
=

�
x1 B1 

 

� �
+ u 

ẋ2 B C  A� 2 1 2  x 0

 � 
 2 ⎪⎪  

� �
� �⎪⎪ x⎩  

y  
1

 = 0 C2 ⎧⎪

ẋ =


⎛ x2 
 
−12 −48 

⎞
1⎪⎨⎪⎪⎪⎪⎪ ⎜ −64 0
 


0
⎜⎜⎜ 1 0 0 0
⎟⎟⎟⎟x +


⎛ ⎞

 0  0 
 


⎟
u
⎪ ⎝ 1 0⎪ 0 1
 f 2
 


⎟⎟

y = 0 0 0 1 x


⎜⎜⎜⎝
⎜

⎠ 
 0
 


⎪ 0


⎟⎠⎪⎪⎪⎩⎪�

ẋ = Ax

�
 + Bu 

�
→ 

y = Cx. 

Here, we use A1, B1, and C1 from the controller canonical form obtained in a). Since matrix A has 
zero block in its upper triangle, the eigenvalues of the cascaded system are ones of A1 and A2, i.e., 
−4, −4, −4, and 2. Thus the cascaded system is not asymptotically stable. Since C1 is not included 
in the eigenvalue computation for A, the stability does not depend on the value of f . 
The controllability matrix C for H(s) is 

  
C =

�⎛B AB A2B A3B

 


2 1 −12 12 − 48 −

�
123 + 48 ∗ 12 ∗ 2 − 64 

0 1 



−12 122 − 48 
=


⎜⎝⎜ ,

0 0
 1 

⎞
−12 

0

⎟



0  1 −12 + f + 2 

⎟

which decreases its rank from 4 to 3 when f = −2. On the other hand, the

⎠
 observability matrix O

for H(s) is 

⎛

C




⎞


⎜⎜ CA
O = ⎝ CA2
 


C 3
A

⎟⎟
0

⎠
⎛ 

 0 0 1
⎜⎜ 0 1 f 2

=
 ⎝
 ,


1 f + 2 2f 4 

⎞



−12 + f + 2 −48 + 2f + 4 −64 + 4f 8 

⎟⎟
thus the choice of f = 4, 

⎠
O drops its rank from full rank to 3. Thus the cascaded system is


unoberservable at f = 4.

It can be seen immediately that f = 2 case corresponds to unstable pole-zero cancellation. Thus,

for f = 2, the cascaded system is BIBO stable, but is not asymptotically stable due to the unstable

pole-zero cancellation.
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