Problem 21.2 Hints

Problem 21.2

Step 1: Show that the problem reduces to

$$
\begin{equation*}
\inf _{\Delta \in \mathbb{R}^{n}}\left\{\|\Delta\|_{\infty}:\binom{\Gamma_{1}^{\prime}}{\Gamma_{2}^{\prime}} \Delta=\binom{1}{0}\right\} . \tag{1}
\end{equation*}
$$

We have made this kind of argument several times.
Step 2: Develop a geometrical interpretation of this minimization, based on the intersection of sets

$$
B_{\beta}=\left\{\Delta \in \mathbb{R}^{n}:\|\Delta\|_{\infty}=\max _{i}\left|\delta_{i}\right| \leq \beta\right\} \quad \text { a } n \text {-d box }
$$

and

$$
L=\left\{\Delta \in \mathbb{R}^{n}:\binom{\Gamma_{1}^{\prime}}{\Gamma_{2}^{\prime}} \Delta=\binom{1}{0}\right\} \quad \text { a }(n-2) \text {-d affine subspace. }
$$

How large must β be for some Δ to be a member of both sets? How small can β be? Where in/on the box $B_{\beta^{*}}$ is an "optimal" Δ going to appear (think about \mathbb{R}^{3}, where B_{β} is a cube and L is a line).

Step 3: We need to simplify the problem. Relax one dimension (say j) of the problem. That is, let

$$
\Delta_{-j}=\left(\delta_{1}, \ldots, \delta_{j-1}, \delta_{j+1}, \ldots, \delta_{n}\right)
$$

(omiting δ_{j}). Consider the relaxed problem (verify it is a relaxation?):

$$
\inf \left\{\beta_{j}:\left\|\Delta_{-j}\right\|_{\infty} \leq \beta_{j},\binom{\Gamma_{1}^{\prime}}{\Gamma_{2}^{\prime}} \Delta=\binom{1}{0}\right\} .
$$

What is the geometric interpretation here? There is a simple way to "remove" δ_{j} also from the linear constraint (by substitution). What remains is a problem that looks like our original rank- 1μ problem, but where all quantities are real. Use this formulation to derive a closed form for β_{j}. Consider this the "crux" of the problem, and make sure to include it in your solution. The answer should be in terms of the elements of Γ_{1} and Γ_{2}.
Step 4: Recall this is a relaxed problem; when will the solution Δ correspond to a point in the box $B_{\beta_{j}}$ (give a checkable condition)? In this case, then β_{j} is indeed the solution to (1). Argue that some dimension must produce a feasible solution. Which of the β_{j} must necessarily be the feasible one (that is, will it be large or small)?

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

