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Exercise 1.4 a) First define all the spaces: 

R(A) = {y ∈ Cm | ∃x ∈ Cn such that y = Ax
m 

} 

R⊥(A) = {z ∈ C | y�z = z�y = 0, ∀y 
 

∈ R(A)} 

R A�  ( ) = {p ∈ Cn | ∃v ∈ Cm such that p = A�v} 

N (A) = {x ∈ Cn | Ax = 0} 

N (A�) = {q ∈ Cm | A�q = 0} 

i) Prove that R⊥(A) = N (A�). 
Proof: Let 

z ∈ R⊥(A) → y�z = 0 ∀y ∈ R(A) 

→ x�A�z  = 0 ∀x ∈ Cn

→ A�z = 0 → z ∈ N (A�) 

→ R⊥(A) ⊂ N (A�). 

Now let 

q ∈ N (A�) → A�q = 0 

→  x�A�q = 0 ∀x ∈ Cn

→ y�q = 0 ∀y ∈ R(A) 

→ q ∈ R⊥(A) 

→ N (A�) ⊂ R⊥(A). 

Therefore 
R⊥(A) = N (A�). 

ii) Prove that N ⊥(A) = R(A�).

Proof: From i) we know that N (A) = R⊥(A�) by switching A with A�. That implies that


N ⊥(A) = {R⊥(A�)}⊥ = R(A�). 

b) Show that rank(A) + rank(B) − n ≤ rank(AB) ≤ min{rank(A), rank(B)}.

Proof: i) Show that rank(AB) ≤ min{rank(A), rank(B)}. It can be proved as follows:

Each column of AB is a combination of the columns of A, which implies that R(AB) ⊆ R(A).

Hence, dim(R(AB)) ≤ dim(R(A)), or equivalently, rank(AB) ≤ rank(A).

Each row of AB is a combination of the rows of B → rowspace (AB) ⊆ rowspace (B), but the

dimension of rowspace = dimension of column space = rank, so that rank(AB) ≤ rank(B). 
Therefore, 
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rank(AB) ≤ min{rank(A), rank(B)}. 

ii) Show that rank(A) + rank(B) − n ≤ rank(AB). 
Let 

rB = rank(B) 

rA = rank(A) 

 where A ∈ Cm×n , B ∈ Cn×p.

Now, let {v1, · · · , vrB } be a basis set of R(B), and add n − rB linearly independent vectors

{w1, · · ·	 , wn rB } to  this basis to span all of Cn, {v1, v2, · · · , v , w ,  , w .− n 1 · · · n−rB }
Let �	    

M = v1| v2 · · · vrB | w1| · · · wn−rB = V W . 

Suppose x ∈ Cn, then x = Mα for some  α ∈ Cn. 

� � �

1.	 R(A) = R(AM) = R([AV |AW ]). 
 Proof: i) Let x ∈ R(A). Then Ay = x for some y ∈ Cn. But y can be written as a linear 

combination of the basis vectors  of Cn, so y = Mα for some α ∈ Cn. 
Then, Ay = AMα = x → x ∈ R(AM) → R(A) ⊂ R(AM). 

   ∈ R         ∈ Cn ii) Let x (AM). Then AMy = x for some y . But My =  z ∈ Cn → Az = x → x ∈ 
R(A) → R(AM) ⊂ R(A). 
Therefore, R(A) = R(AM) = R([AV |AW ]). 

2.	 R(AB) = R(AV ). 
Proof: i) Let x ∈ R           ∈ CrB   (AV ). Then AV y = x for some y . Yet, V y = Bα for some α ∈ Cp

since the columns of V and B span the same space. That implies that AV y = ABα = x → 
x ∈ R(AB) → R(AV ) ⊂ R(AB). 
ii) Let x ∈ R(AB). Then (AB)y = x for some y ∈ Cp. Yet, again By = V θ for some

θ ∈ CrB → ABy = AV θ = x → x ∈ R(AV ) → R(AB) ⊂ R(AV ).

Therefore, R(AV ) = R(AB).


Using fact 1, we see that the number of linearly independent columns of A is less than or equal to 
the number of linearly independent columns of AV + the number of linearly independent columns 
of AW , which means that 

rank(A) ≤ rank(AV ) + rank(AW ). 

Using fact 2, we see that 

rank(AV ) = rank(AB) → rank(A) ≤ rank(AB) + rank(AW ),

yet, there re only n − rB columns in AW . Thus, 

→ rank(AW ) ≤ n − rB 

→ rank(A) − rank(AB) ≤ rank(AW ) ≤ n − rB 

→ rA − (n − rB) ≤ rAB. 
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This completes the proof. 

Exercise 2.2 (a) For the 2nd order polynomial p 2
2(t) = a0 + a1t + a2t , we have f(ti) = p2(ti) + 

ei i = 1, . . . , 16, and ti ∈ T. We can express the relationship between yi and the polynomial as 
follows; 

⎡ 


 ⎤ ⎡



 1 t1 t21 

⎤
 ⎢ y1 ⎥ ⎢⎢ . . . ⎥⎡⎥ ea 

1⎣ ..
 . 0

.
 . . .
 
 .


 
 ⎦ =
⎢ . 


 ⎣ ⎥⎦⎣ a  1 +
 .
. 

2 . 



  

1 t16 t 


16 a2

⎤ ⎡ ⎤
y16 

⎦ ⎢⎣
e16 

⎥⎦
The coefficients a0, a1, and a2 are determined by the least squares solution to this (overconstrained)  �  
problem, a = (A A)−1A�y, where aLS = a0 a1 a2 

�
. 

Numerically, the values of the coefficients

�
 are: 

aLS = 0.2061
 

 

⎡ 

�
0.5296


 


0.375 

⎤

For the 15th order polynomial, by a similar reasoning

⎣
 w

⎦
e can express the relation between data 

points yi and the polynomial as follows: ⎡ 
 y1 1 t 2 15

1 t1  t1 a0 e1
.
.



⎤
. . .

·
. 
· ·

.
 .
 .


 
=


⎡

 . .  
 .  
 . 
 .



⎤⎡
 .. 


⎤

+
 .. . . . . . 
 
.
 


y 1 t t2 15

⎡ ⎤
16 16 16  t16 a15 e16

⎢ ⎥ ⎢⎣ ⎦ ⎣
· · ·

⎥⎢ ⎥ ⎢ ⎥
This can be rewritten as y = Aa + e e 

⎦⎣ ⎦ ⎣ ⎦
.
 Observ that matrix A is invertible for distinct t s.

 i
� So


the coefficients a 1
i of the polynomial are aexact = A− y, where aexact = a0 a1 · · · a15 

�
. The


resulting error in fitting the data is e = 0, thus we have a perfect fit

�
 at these particular

�
 time


instants.

Numerically, the values of the coefficients of are:
⎡ 

0.49999998876521 ⎢⎢⎢ 0.39999826604650 

⎤⎥⎥⎥⎢⎢⎢ 0.16013119161635 
 ⎥⎥⎢⎢ 0.04457531385982

0
⎥⎢ .00699544100513 ⎢⎢ −0.00976690595462 

⎥
⎢⎢⎢ −0.02110628552919 

⎢ 0.02986537283027 

⎥
aexact = 

⎥⎥

⎢⎢ −0.03799813521505 

⎥

⎢⎢ 0.00337725219202 

⎥

⎢ −0.00252507772183 

⎥⎥⎥⎥
⎢⎢⎢ 0.00072658523695 

⎥⎥
⎢⎢ −0.00021752221402 

⎥⎥
−0.00009045014791 

⎥⎥⎥⎥⎢⎣⎢
 −0.00015170733465 


−0.00001343734075 

⎥⎥⎥⎦
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The function f(t) as well as the approximating polynomials p15(t) and p2(t) are plotted in 
Figure 2.2b. Note that while both polynomials are a good fit, the fifteenth order polynomial is a 
better approximation, as expected. 
b) Now we have measurements affected by some noise. The corrupted data is 

ỹi = f(ti) + e(ti) i = 1, . . . , 16 ti ∈ T 

where the noise e(ti) is generated by a command “randn” in Matlab.

Following the reasoning in part (a), we can express the relation between the noisy data points ỹi

and the polynomial as follows:


ỹ = Aa + ẽ 

The solution procedure is the same as in part (a), with y replaced by ỹ. 

Numerically, the values of the coefficients are: ⎡ 
0.00001497214861 

⎤
⎢⎢  ⎢ 0.00089442543781

0  

⎥
⎢⎢⎢ − .01844588716755

0  ⎢ .14764397515270⎢⎢ −0.63231582484352 

⎥⎥
1.  

⎥⎥⎥⎥
⎢⎢ 62190727992829

⎢⎢⎢⎢
−2.61484909708492 
2.67459894145774 

a  =

⎥⎥
 

exact  ⎢⎢ −1.67594757924772 

⎥⎥
∗ 105

⎢⎢ 0.56666848864500 

⎥⎥⎥
⎢⎢⎢ −0.06211921500456 

⎥⎥

⎢ 0.00219622725954 
−0.01911248745682 

⎥⎥⎥

0.01085690854235 

⎥⎥⎥
0

⎥⎢⎢⎢⎣⎢
 − .00207893294346 

⎥
0.00010788458590 

⎥⎥⎥⎦
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Figure 2.2a 
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Figure 2.2b


and ⎡ ⎤ 
1.2239 

aLS = ⎣ −0.1089 
0.3219 

⎦ 

The function f(t) as well as the approximating polynomials p15(t) and p2(t) are plotted in 
Figure 2.2b. The second order polynomial does much better in this case as the fifteenth order 
polynomial ends up fitting the noise. Overfitting is a common problem encountered when trying 
to fit a finite data set corrupted by noise using a class of models that is too rich. 

Additional Comments A stochastic derivation shows that the “minimum variance unbiased 
estimator” for a is â = argmin�ỹ− Aa�2 where W = R−1, and Rn is the covariance matrix of the W n 
random variable e. So, 

â = (A�WA)−1A�Wỹ. 

Roughly speaking, this is saying that measurements with more noise are given less weight in the 
estimate of a. In our problem, Rn = I because the e�is are independent, zero mean and have unit 
variance. That is, each of the measurments is “equally noisy” or treated as equally reliable. 

c) p2(t) can be written as 
p2(t) = a0 + a1t + a2t

2 . 

In order to minimize the approximation error in least square sense, the optimal p̂2(t) must be such 
that the error, f − p̂2, is orthogonal to the span of {1, t, t2}: 

< f − p̂2, 1 >= 0 < f, 1 >=< p̂2, 1 >→

< f − p̂2, t >= 0 < f, t >=< p̂2, t > →

< f − p̂2, t
2 >= 0 →< f, t2 >=< p̂2, t

2 > . 
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Figure 2.2c 

We have that f = 1 e0.8t for t ∈ [0, 2], So, 2 � 2 1 5  
 = 0 5

< f, 1 >  e .8tdt = e 
8
5  

0 2 8 
−

8� 2 t 0.8t 15 8 25 
< f, t >= e dt = e 5 + 

0 2 32 32
 2 t2 85  125 

< f, 2 8

t >=

�
e0 .8tdt = e 5

64 
− . 

0 2 64 

And, 
8 

< p̂2, 1 >= 2a0 + 2a1 + a
 2

3

8 
< p̂2, t >= 2a0 + a

 1 + 4a2
3

2 8 32 
< p̂2, t >= a0 + 4a1 + a2

3 5 
Therefore the problem reduces to solving another set of linear equations: ⎡   

2 2 8 a⎣  0 < f, 1 >
3
 2 8 4  a    

 1 = < f, t > .
3
8 4 32 a < f, t2 >
3 5 

⎤⎡ ⎤ ⎡

Numerically, the values of the coefficien

⎦
ts

⎣
2 

⎤

  are: 

⎦ ⎣ ⎦

⎡  
0.5353 

a =  0.2032 

⎤
 

0.3727 

The function f(t) and the approximating

⎣
 polynomial

⎦
 p2(t) are plotted in Figure 2.2c. Here 

we use a different notion for the closeness of the approximating polynomial, p̂2(t), to the original 
function, f . Roughly speaking, in parts (a) and (b), the optimal polynomial will be the one for 
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which there is smallest discrepancy between f(ti) and p2(ti) for all ti, i.e., the polynomial that will 
come closest to passing through all the sample points, f(ti). All that matters is the 16 sample 
points, f(ti). In this part however, all the points of f matter. 

y1 C1 e1 S1 0 
Exercise 2.3 Let y = , A = , e = and S = . 

y2 C2 e2 0 S2 

Note that A has full column rank because C1 has full column rank. Also note that S is symmetric 
positive definite since both S1 and S2 are symmetric positive definite. Therefore, we know that 
x̂ = argmin e�Se exists and is unique and is given by x̂ = (A�SA)−1A�Sy. 

Thus by direct substitution of terms, we have: 

x̂ = (C1
�S1C1 + C2

�S2C2)
−1(C1

�S1y1 + C2
�S2y2) 

Recall that x̂1 = (C1
�S1C1)

−1C1
�S1y1 and that x̂2 = (C2

�S2C2)
−1C2

�S2y2. Hence x̂ can be re-written 
as: 

x̂ = (Q1 + Q2)
−1(Q1x̂1 + Q2x̂2) 

Exercise 2.8 We can think of the two data sets as sequentially available data sets. x̂ is the 
least squares solution to y ≈ Ax corresponding to minimizing the euclidean norm of e1 = y − Ax. 

y A 
x̄ is the least squares solution to 

z 
≈ 

D
x corresponding to minimizing e�1e1 + e�2Se2 where 

e2 = z − Dx and S is a symmetric (hermitian) positive definite matrix of weights. 
By the recursion formula, we have: 

x̄ = x̂+ (A�A + D�SD)−1D�S(z − Dx̂) 

This can be re-written as: 

x̄ = x̂+ (I + (A�A)−1D�SD)−1(A�A)−1D�S(z − Dx̂) 

= x̂+ (A�A)−1D�(I + SD(A�A)−1D�)−1S(z − Dx̂) 

This step follows from the result in Problem 1.3 (b). Hence 

x̄ = x̂+ (A�A)−1D�(SS−1 + SD(A�A)−1D�)−1S(z − Dx̂) 

= x̂+ (A�A)−1D�(S−1 + D(A�A)−1D�)−1S−1S(z − Dx̂) 

= x̂+ (A�A)−1D�(S−1 + D(A�A)−1D�)−1(z − Dx̂) 

In order to ensure that the constraint z = Dx is satisfied exactly, we need to penalize the 
corresponding error term heavily (S → ∞). Since D has full row rank, we know there exists at 
least one value of x that satisfies equation z = Dx exactly. Hence the optimization problem we are 
setting up does indeed  have a solution. Taking the limiting case as S → ∞, hence as S−1 → 0, we 
get the desired expression: 

x̄ = x̂+ (A�A)−1D�(D(A�A)−1D�)−1(z − Dx̂) 
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In the ’trivial’ case where D is a square (hence non-singular) matrix, the set of values of x over 
which we seek to minimize the cost function consists of a single element, D−1z. Thus, x̄ in this 
case is simply x̄ = D−1z. It is easy to verify that the expression we obtained does in fact reduce 
to this when D is invertible. 

Exercise 3.1 The first and the third facts given in the problem are the keys to solve this problem, 
in addition to the fact that:


R 
UA = . 

0 

Here note that R is a nonsingular, upper-triangular matrix so that it can be inverted. Now the 
problem reduces to show that 

x̂ = arg min �y − Ax�2 = arg min(y − Ax)�(y − Ax)2 x x 

is indeed equal to 
x̂ = R−1 y1. 

Let’s transform the problem into the familiar form. We introduce an error e such that 

y = Ax + e, 

and we would like to minimize �e�2 which is equivalent to minimizing �y−Ax�2. Using the property 

�e�2 = �Ue�2. 

of an orthogonal matrix, we have that 

Thus with Ax, we have −e = y 

���� 

2 2 2�Ue� = e�U �Ue = (U(y − Ax))�(U(y − Ax)) = �Uy − UAx�2 
2

�e�
 =
2 2 

y1 R 
= (y1 − Rx)�(y1 − Rx) + y2

� y2.−
=
 x

0
y2 2 

Since �y2�2 = y2
� y2 is just a constant, it does not play any role in this minimization. 2 

Thus we would lik to have 
y1 − Rx̂ = 0 

and because R is an invertible matrix, x̂ = R−1y1. 
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