6.241: Dynamic Systems-Fall 2007

Homework 2 Solutions

Exercise 1.4 a) First define all the spaces:

$$
\begin{aligned}
\mathcal{R}(A) & =\left\{y \in \mathbb{C}^{m} \mid \exists x \in \mathbb{C}^{n} \text { such that } y=A x\right\} \\
\mathcal{R}^{\perp}(A) & =\left\{z \in \mathbb{C}^{m} \mid y^{\prime} z=z^{\prime} y=0, \forall y \in \mathcal{R}(A)\right\} \\
\mathcal{R}\left(A^{\prime}\right) & =\left\{p \in \mathbb{C}^{n} \mid \exists v \in \mathbb{C}^{m} \text { such that } p=A^{\prime} v\right\} \\
\mathcal{N}(A) & =\left\{x \in \mathbb{C}^{n} \mid A x=0\right\} \\
\mathcal{N}\left(A^{\prime}\right) & =\left\{q \in \mathbb{C}^{m} \mid A^{\prime} q=0\right\}
\end{aligned}
$$

i) Prove that $\mathcal{R}^{\perp}(A)=\mathcal{N}\left(A^{\prime}\right)$.

Proof: Let

$$
\begin{aligned}
z \in \mathcal{R}^{\perp}(A) & \rightarrow y^{\prime} z=0 \forall y \in \mathcal{R}(A) \\
& \rightarrow x^{\prime} A^{\prime} z=0 \forall x \in \mathbb{C}^{n} \\
& \rightarrow A^{\prime} z=0 \rightarrow z \in \mathcal{N}\left(A^{\prime}\right) \\
& \rightarrow \mathcal{R}^{\perp}(A) \subset \mathcal{N}\left(A^{\prime}\right) .
\end{aligned}
$$

Now let

$$
\begin{aligned}
q \in \mathcal{N}\left(A^{\prime}\right) & \rightarrow A^{\prime} q=0 \\
& \rightarrow x^{\prime} A^{\prime} q=0 \forall x \in \mathbb{C}^{n} \\
& \rightarrow y^{\prime} q=0 \forall y \in \mathcal{R}(A) \\
& \rightarrow q \in \mathcal{R}^{\perp}(A) \\
& \rightarrow \mathcal{N}\left(A^{\prime}\right) \subset \mathcal{R}^{\perp}(A) .
\end{aligned}
$$

Therefore

$$
\mathcal{R}^{\perp}(A)=\mathcal{N}\left(A^{\prime}\right)
$$

ii) Prove that $\mathcal{N}^{\perp}(A)=\mathcal{R}\left(A^{\prime}\right)$.

Proof: From i) we know that $\mathcal{N}(A)=\mathcal{R}^{\perp}\left(A^{\prime}\right)$ by switching A with A^{\prime}. That implies that

$$
\mathcal{N}^{\perp}(A)=\left\{\mathcal{R}^{\perp}\left(A^{\prime}\right)\right\}^{\perp}=\mathcal{R}\left(A^{\prime}\right) .
$$

b) Show that $\operatorname{rank}(A)+\operatorname{rank}(B)-n \leq \operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$.

Proof: i) Show that $\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}$. It can be proved as follows:
Each column of $A B$ is a combination of the columns of A, which implies that $\mathcal{R}(A B) \subseteq \mathcal{R}(A)$. Hence, $\operatorname{dim}(\mathcal{R}(A B)) \leq \operatorname{dim}(\mathcal{R}(A))$, or equivalently, $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
Each row of $A B$ is a combination of the rows of $B \rightarrow$ rowspace $(A B) \subseteq$ rowspace (B), but the dimension of rowspace $=$ dimension of column space $=\operatorname{rank}$, so that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
Therefore,

$$
\operatorname{rank}(A B) \leq \min \{\operatorname{rank}(A), \operatorname{rank}(B)\}
$$

ii) Show that $\operatorname{rank}(A)+\operatorname{rank}(B)-n \leq \operatorname{rank}(A B)$.

Let

$$
\begin{aligned}
r_{B} & =\operatorname{rank}(B) \\
r_{A} & =\operatorname{rank}(A)
\end{aligned}
$$

where $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$.
Now, let $\left\{v_{1}, \cdots, v_{r_{B}}\right\}$ be a basis set of $\mathcal{R}(B)$, and add $n-r_{B}$ linearly independent vectors $\left\{w_{1}, \cdots, w_{n-r_{B}}\right\}$ to this basis to span all of $\mathbb{C}^{n},\left\{v_{1}, v_{2}, \cdots, v_{n}, w_{1}, \cdots, w_{n-r_{B}}\right\}$.
Let

$$
M=\left(\left.\begin{array}{cccc}
v_{1} \mid & v_{2} & \cdots & v_{r_{B}} \mid
\end{array} w_{1} \right\rvert\, \quad \cdots \quad w_{n-r_{B}}\right)=\left(\begin{array}{cc}
V & W
\end{array}\right)
$$

Suppose $x \in \mathbb{C}^{n}$, then $x=M \alpha$ for some $\alpha \in \mathbb{C}^{n}$.

1. $\mathcal{R}(A)=\mathcal{R}(A M)=\mathcal{R}([A V \mid A W])$.

Proof: i) Let $x \in \mathcal{R}(A)$. Then $A y=x$ for some $y \in \mathbb{C}^{n}$. But y can be written as a linear combination of the basis vectors of \mathbb{C}^{n}, so $y=M \alpha$ for some $\alpha \in \mathbb{C}^{n}$.
Then, $A y=A M \alpha=x \rightarrow x \in \mathcal{R}(A M) \rightarrow \mathcal{R}(A) \subset \mathcal{R}(A M)$.
ii) Let $x \in \mathcal{R}(A M)$. Then $A M y=x$ for some $y \in \mathbb{C}^{n}$. But $M y=z \in \mathbb{C}^{n} \rightarrow A z=x \rightarrow x \in$ $\mathcal{R}(A) \rightarrow \mathcal{R}(A M) \subset \mathcal{R}(A)$.
Therefore, $\mathcal{R}(A)=\mathcal{R}(A M)=\mathcal{R}([A V \mid A W])$.
2. $\mathcal{R}(A B)=\mathcal{R}(A V)$.

Proof: i) Let $x \in \mathcal{R}(A V)$. Then $A V y=x$ for some $y \in \mathbb{C}^{r_{B}}$. Yet, $V y=B \alpha$ for some $\alpha \in \mathbb{C}^{p}$ since the columns of V and B span the same space. That implies that $A V y=A B \alpha=x \rightarrow$ $x \in \mathcal{R}(A B) \rightarrow \mathcal{R}(A V) \subset \mathcal{R}(A B)$.
ii) Let $x \in \mathcal{R}(A B)$. Then $(A B) y=x$ for some $y \in \mathbb{C}^{p}$. Yet, again $B y=V \theta$ for some $\theta \in \mathbb{C}^{r_{B}} \rightarrow A B y=A V \theta=x \rightarrow x \in \mathcal{R}(A V) \rightarrow \mathcal{R}(A B) \subset \mathcal{R}(A V)$.
Therefore, $\mathcal{R}(A V)=\mathcal{R}(A B)$.
Using fact 1 , we see that the number of linearly independent columns of A is less than or equal to the number of linearly independent columns of $A V+$ the number of linearly independent columns of $A W$, which means that

$$
\operatorname{rank}(A) \leq \operatorname{rank}(A V)+\operatorname{rank}(A W)
$$

Using fact 2 , we see that

$$
\operatorname{rank}(A V)=\operatorname{rank}(A B) \rightarrow \operatorname{rank}(A) \leq \operatorname{rank}(A B)+\operatorname{rank}(A W)
$$

yet, there re only $n-r_{B}$ columns in $A W$. Thus,

$$
\begin{aligned}
& \rightarrow \operatorname{rank}(A W) \leq n-r_{B} \\
& \rightarrow \operatorname{rank}(A)-\operatorname{rank}(A B) \leq \operatorname{rank}(A W) \leq n-r_{B} \\
& \rightarrow r_{A}-\left(n-r_{B}\right) \leq r_{A B}
\end{aligned}
$$

This completes the proof.
Exercise 2.2 (a) For the 2nd order polynomial $p_{2}(t)=a_{0}+a_{1} t+a_{2} t^{2}$, we have $f\left(t_{i}\right)=p_{2}\left(t_{i}\right)+$ $e_{i} \quad i=1, \ldots, 16$, and $t_{i} \in T$. We can express the relationship between y_{i} and the polynomial as follows;

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{16}
\end{array}\right]=\left[\begin{array}{ccc}
1 & t_{1} & t_{1}^{2} \\
\vdots & \vdots & \vdots \\
1 & t_{16} & t_{16}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{16}
\end{array}\right]
$$

The coefficients a_{0}, a_{1}, and a_{2} are determined by the least squares solution to this (overconstrained) problem, $\underline{a}=\left(A^{\prime} A\right)^{-1} A^{\prime} y$, where $\underline{a}_{L S}=\left[\begin{array}{lll}a_{0} & a_{1} & a_{2}\end{array}\right]^{\prime}$. Numerically, the values of the coefficients are:

$$
\underline{a}_{L S}=\left[\begin{array}{c}
0.5296 \\
0.2061 \\
0.375
\end{array}\right]
$$

For the 15th order polynomial, by a similar reasoning we can express the relation between data points y_{i} and the polynomial as follows:

$$
\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{16}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{15} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_{16} & t_{16}^{2} & \cdots & t_{16}^{15}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{15}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
\vdots \\
e_{16}
\end{array}\right]
$$

This can be rewritten as $\underline{y}=A \underline{a}+\underline{e}$. Observe that matrix A is invertible for distinct $t_{i}^{\prime} s$. So the coefficients a_{i} of the polynomial are $\underline{a}_{\text {exact }}=A^{-1} y$, where $\underline{a}_{\text {exact }}=\left[\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{15}\end{array}\right]^{\prime}$. The resulting error in fitting the data is $\underline{e}=0$, thus we have a perfect fit at these particular time instants.
Numerically, the values of the coefficients of are:

$$
\underline{a}_{\text {exact }}=\left[\begin{array}{c}
0.49999998876521 \\
0.39999826604650 \\
0.16013119161635 \\
0.04457531385982 \\
0.00699544100513 \\
-0.00976690595462 \\
-0.02110628552919 \\
0.02986537283027 \\
-0.03799813521505 \\
0.00337725219202 \\
-0.00252507772183 \\
0.00072658523695 \\
-0.00021752221402 \\
-0.00009045014791 \\
-0.00015170733465 \\
-0.00001343734075
\end{array}\right]
$$

Figure 2.2a

The function $f(t)$ as well as the approximating polynomials $p_{15}(t)$ and $p_{2}(t)$ are plotted in Figure 2.2 b . Note that while both polynomials are a good fit, the fifteenth order polynomial is a better approximation, as expected.
b) Now we have measurements affected by some noise. The corrupted data is

$$
\tilde{y}_{i}=f\left(t_{i}\right)+e\left(t_{i}\right) \quad i=1, \ldots, 16 \quad t_{i} \in T
$$

where the noise $e\left(t_{i}\right)$ is generated by a command "randn" in Matlab.
Following the reasoning in part (a), we can express the relation between the noisy data points \tilde{y}_{i} and the polynomial as follows:

$$
\underline{\tilde{y}}=A \underline{a}+\underline{\tilde{e}}
$$

The solution procedure is the same as in part (a), with y replaced by \tilde{y}.
Numerically, the values of the coefficients are:

$$
\underline{a}_{\text {exact }}=\left[\begin{array}{c}
0.00001497214861 \\
0.00089442543781 \\
-0.01844588716755 \\
0.14764397515270 \\
-0.63231582484352 \\
1.62190727992829 \\
-2.61484909708492 \\
2.67459894145774 \\
-1.67594757924772 \\
0.56666848864500 \\
-0.06211921500456 \\
0.00219622725954 \\
-0.01911248745682 \\
0.01085690854235 \\
-0.00207893294346 \\
0.00010788458590
\end{array}\right] * 10^{5}
$$

Figure 2.2b
and

$$
\underline{a}_{L S}=\left[\begin{array}{c}
1.2239 \\
-0.1089 \\
0.3219
\end{array}\right]
$$

The function $f(t)$ as well as the approximating polynomials $p_{15}(t)$ and $p_{2}(t)$ are plotted in Figure 2.2b. The second order polynomial does much better in this case as the fifteenth order polynomial ends up fitting the noise. Overfitting is a common problem encountered when trying to fit a finite data set corrupted by noise using a class of models that is too rich.

Additional Comments A stochastic derivation shows that the "minimum variance unbiased estimator" for \underline{a} is $\underline{\hat{a}}=\operatorname{argmin}\|\underline{\tilde{y}}-A \underline{a}\|_{W}^{2}$ where $W=R_{n}^{-1}$, and R_{n} is the covariance matrix of the random variable \underline{e}. So,

$$
\underline{\hat{a}}=\left(A^{\prime} W A\right)^{-1} A^{\prime} W \underline{\tilde{y}} .
$$

Roughly speaking, this is saying that measurements with more noise are given less weight in the estimate of \underline{a}. In our problem, $R_{n}=I$ because the $e_{i}^{\prime} s$ are independent, zero mean and have unit variance. That is, each of the measurments is "equally noisy" or treated as equally reliable.
c) $p_{2}(t)$ can be written as

$$
p_{2}(t)=a_{0}+a_{1} t+a_{2} t^{2} .
$$

In order to minimize the approximation error in least square sense, the optimal $\hat{p}_{2}(t)$ must be such that the error, $f-\hat{p_{2}}$, is orthogonal to the span of $\left\{1, t, t^{2}\right\}$:

$$
\begin{gathered}
<f-\hat{p_{2}}, 1>=0 \rightarrow<f, 1>=<\hat{p_{2}}, 1> \\
<f-\hat{p_{2}}, t>=0 \rightarrow<f, t>=<\hat{p_{2}}, t> \\
<f-\hat{p_{2}}, t^{2}>=0 \rightarrow<f, t^{2}>=<\hat{p_{2}}, t^{2}>.
\end{gathered}
$$

Figure 2.2c

We have that $f=\frac{1}{2} e^{0.8 t}$ for $t \in[0,2]$, So,

$$
\begin{gathered}
<f, 1>=\int_{0}^{2} \frac{1}{2} e^{0.8 t} d t=\frac{5}{8} e^{\frac{8}{5}}-\frac{5}{8} \\
<f, t>=\int_{0}^{2} \frac{t}{2} e^{0.8 t} d t=\frac{15}{32} e^{\frac{8}{5}}+\frac{25}{32} \\
<f, t^{2}>=\int_{0}^{2} \frac{t^{2}}{2} e^{0.8 t} d t=\frac{85}{64} e^{\frac{8}{5}}-\frac{125}{64} .
\end{gathered}
$$

And,

$$
\begin{aligned}
<\hat{p_{2}}, 1> & =2 a_{0}+2 a_{1}+\frac{8}{3} a_{2} \\
<\hat{p_{2}}, t> & =2 a_{0}+\frac{8}{3} a_{1}+4 a_{2} \\
<\hat{p_{2}}, t^{2}> & =\frac{8}{3} a_{0}+4 a_{1}+\frac{32}{5} a_{2}
\end{aligned}
$$

Therefore the problem reduces to solving another set of linear equations:

$$
\left[\begin{array}{ccc}
2 & 2 & \frac{8}{3} \\
2 & \frac{8}{3} & 4 \\
\frac{8}{3} & 4 & \frac{32}{5}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
<f, 1> \\
<f, t> \\
<f, t^{2}>
\end{array}\right] .
$$

Numerically, the values of the coefficients are:

$$
\underline{a}=\left[\begin{array}{l}
0.5353 \\
0.2032 \\
0.3727
\end{array}\right]
$$

The function $f(t)$ and the approximating polynomial $p_{2}(t)$ are plotted in Figure 2.2c. Here we use a different notion for the closeness of the approximating polynomial, $\hat{p}_{2}(t)$, to the original function, f. Roughly speaking, in parts (a) and (b), the optimal polynomial will be the one for
which there is smallest discrepancy between $f\left(t_{i}\right)$ and $p_{2}\left(t_{i}\right)$ for all t_{i}, i.e., the polynomial that will come closest to passing through all the sample points, $f\left(t_{i}\right)$. All that matters is the 16 sample points, $f\left(t_{i}\right)$. In this part however, all the points of f matter.

Exercise 2.3 Let $y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right], A=\left[\begin{array}{l}C_{1} \\ C_{2}\end{array}\right], e=\left[\begin{array}{l}e_{1} \\ e_{2}\end{array}\right]$ and $S=\left[\begin{array}{cc}S_{1} & 0 \\ 0 & S_{2}\end{array}\right]$.
Note that A has full column rank because C_{1} has full column rank. Also note that S is symmetric positive definite since both S_{1} and S_{2} are symmetric positive definite. Therefore, we know that $\hat{x}=\operatorname{argmin} e^{\prime} S e$ exists and is unique and is given by $\hat{x}=\left(A^{\prime} S A\right)^{-1} A^{\prime} S y$.

Thus by direct substitution of terms, we have:

$$
\hat{x}=\left(C_{1}^{\prime} S_{1} C_{1}+C_{2}^{\prime} S_{2} C_{2}\right)^{-1}\left(C_{1}^{\prime} S_{1} y_{1}+C_{2}^{\prime} S_{2} y_{2}\right)
$$

Recall that $\hat{x}_{1}=\left(C_{1}^{\prime} S_{1} C_{1}\right)^{-1} C_{1}^{\prime} S_{1} y_{1}$ and that $\hat{x}_{2}=\left(C_{2}^{\prime} S_{2} C_{2}\right)^{-1} C_{2}^{\prime} S_{2} y_{2}$. Hence \hat{x} can be re-written as:

$$
\hat{x}=\left(Q_{1}+Q_{2}\right)^{-1}\left(Q_{1} \hat{x}_{1}+Q_{2} \hat{x}_{2}\right)
$$

Exercise 2.8 We can think of the two data sets as sequentially available data sets. \hat{x} is the least squares solution to $y \approx A x$ corresponding to minimizing the euclidean norm of $e_{1}=y-A x$. \bar{x} is the least squares solution to $\left[\begin{array}{l}y \\ z\end{array}\right] \approx\left[\begin{array}{l}A \\ D\end{array}\right] x$ corresponding to minimizing $e_{1}^{\prime} e_{1}+e_{2}^{\prime} S e_{2}$ where $e_{2}=z-D x$ and S is a symmetric (hermitian) positive definite matrix of weights.

By the recursion formula, we have:

$$
\bar{x}=\hat{x}+\left(A^{\prime} A+D^{\prime} S D\right)^{-1} D^{\prime} S(z-D \hat{x})
$$

This can be re-written as:

$$
\begin{aligned}
\bar{x} & =\hat{x}+\left(I+\left(A^{\prime} A\right)^{-1} D^{\prime} S D\right)^{-1}\left(A^{\prime} A\right)^{-1} D^{\prime} S(z-D \hat{x}) \\
& =\hat{x}+\left(A^{\prime} A\right)^{-1} D^{\prime}\left(I+S D\left(A^{\prime} A\right)^{-1} D^{\prime}\right)^{-1} S(z-D \hat{x})
\end{aligned}
$$

This step follows from the result in Problem 1.3 (b). Hence

$$
\begin{aligned}
\bar{x}= & \hat{x}+\left(A^{\prime} A\right)^{-1} D^{\prime}\left(S S^{-1}+S D\left(A^{\prime} A\right)^{-1} D^{\prime}\right)^{-1} S(z-D \hat{x}) \\
= & \hat{x}+\left(A^{\prime} A\right)^{-1} D^{\prime}\left(S^{-1}+D\left(A^{\prime} A\right)^{-1} D^{\prime}\right)^{-1} S^{-1} S(z-D \hat{x}) \\
& =\hat{x}+\left(A^{\prime} A\right)^{-1} D^{\prime}\left(S^{-1}+D\left(A^{\prime} A\right)^{-1} D^{\prime}\right)^{-1}(z-D \hat{x})
\end{aligned}
$$

In order to ensure that the constraint $z=D x$ is satisfied exactly, we need to penalize the corresponding error term heavily $(S \rightarrow \infty)$. Since D has full row rank, we know there exists at least one value of x that satisfies equation $z=D x$ exactly. Hence the optimization problem we are setting up does indeed have a solution. Taking the limiting case as $S \rightarrow \infty$, hence as $S^{-1} \rightarrow 0$, we get the desired expression:

$$
\bar{x}=\hat{x}+\left(A^{\prime} A\right)^{-1} D^{\prime}\left(D\left(A^{\prime} A\right)^{-1} D^{\prime}\right)^{-1}(z-D \hat{x})
$$

In the 'trivial' case where D is a square (hence non-singular) matrix, the set of values of x over which we seek to minimize the cost function consists of a single element, $D^{-1} z$. Thus, \bar{x} in this case is simply $\bar{x}=D^{-1} z$. It is easy to verify that the expression we obtained does in fact reduce to this when D is invertible.

Exercise 3.1 The first and the third facts given in the problem are the keys to solve this problem, in addition to the fact that:

$$
U A=\binom{R}{0}
$$

Here note that R is a nonsingular, upper-triangular matrix so that it can be inverted. Now the problem reduces to show that

$$
\hat{x}=\arg \min _{x}\|y-A x\|_{2}^{2}=\arg \min _{x}(y-A x)^{\prime}(y-A x)
$$

is indeed equal to

$$
\hat{x}=R^{-1} y_{1} .
$$

Let's transform the problem into the familiar form. We introduce an error e such that

$$
y=A x+e,
$$

and we would like to minimize $\|e\|_{2}$ which is equivalent to minimizing $\|y-A x\|_{2}$. Using the property of an orthogonal matrix, we have that

$$
\|e\|_{2}=\|U e\|_{2}
$$

Thus with $e=y-A x$, we have

$$
\begin{aligned}
\|e\|_{2}^{2} & =\|U e\|_{2}^{2}=e^{\prime} U^{\prime} U e=(U(y-A x))^{\prime}(U(y-A x))=\|U y-U A x\|_{2}^{2} \\
& =\left\|\binom{y_{1}}{y_{2}}-\binom{R}{0} x\right\|_{2}^{2}=\left(y_{1}-R x\right)^{\prime}\left(y_{1}-R x\right)+y_{2}^{\prime} y_{2} .
\end{aligned}
$$

Since $\left\|y_{2}\right\|_{2}^{2}=y_{2}^{\prime} y_{2}$ is just a constant, it does not play any role in this minimization. Thus we would lik to have

$$
y_{1}-R \hat{x}=0
$$

and because R is an invertible matrix, $\hat{x}=R^{-1} y_{1}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

