
MITOCW | ocw-6-189-iap07-lec04_300k

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high quality educational resources for free. To make a

donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: So, the next part, today's going to be about concurrent programming. So in this lecture we are

going to study concurrent programing with the emphasis for correctness of programs.

Because parallel programs will have the same correctness issues. So, if you want to get

parallel, you'd better get the concurrency right first.

What we're also going do is start with a much simpler machine model. In a program where we

are going to use Java, because I think a lot of people understand Java. Also, we are going to

do some very simple shared [UNINTELLIGIBLE] machine abstraction. I'm not going to even

talk about any machine anymore. I'm just going to talk about concurrent programming here.

You need to get through this one before you can start to dig in deep into the next level.

So in the next lecture, we will switch from Java to C-C , I guess using MPI primitives in here.

We'll start moving into parallelism with emphasis on performance. And, of course, you have to

get correctness, that's given, but we'll start looking at performance in there. And we'll start

using the distributive memory machine, all the notions and details of Cell, so we'll just kind of

go down and down in that direction.

So, what's concurrency? Sequential program is -- because sequential program opposite. It's

basically single thread of execution, with is a good one. Finish that, go to the next, go to the

next. That's a very simple abstract model that for about 35 years, 40 years, none of the

machines were actually following, that they had things in the back that actually had some

parallelism.

A concurrent program is the [UNINTELLIGIBLE PHRASE] because it's a collection of

autonomous sequential threads executing logically in parallel.

So you can execute this thing either multi-programming, so we can multiplex different parts on

multiprocessing. Well, multiprocessing basically has [UNINTELLIGIBLE] starting on different

machines. You can distribute, you can actually send it to different places. Of course, you have

to deal with memory issues.



So, concurrency's not only parallel systems. So you can do interleaved concurrency. You can

have logically parallel, but you run Thread A for a while, contacts with Thread B for a while,

contacts with Thread C, so you can have multiple threads on the same machine running. Or

you can actually have running parallel. You can have three different machines running, A, B

and C all the time. So you can have both in there. But logically you should not see a difference

except for performance and stuff like that.

So what I'm going to do is do a bunch of examples. Can you read this? Let's start with a bank.

So you have a bank account. So in Java you just basically have ID, password, and balance,

and you have some way to construct this object in here. And you can ask, and see the

password is correct. You can get the balance. And you can post the balance. So that's a very

simple account object. If you have a bank, you have a bunch of accounts in a hash map, and

you create the hash map in here. Then you can basically [? figure out ?] the bank, you actually

create a bank in here, and you can get an account, given an ID.

Now, assume you want to build an ATM. How do you build an ATM? So, you have a bank --

you need a bank in here, and here's some input and output streams in here. When you start

the ATM, you will set up these input and output streams in here. In the main function, what

you'll do is, you get a bank, create where the input streams are coming from. Create output

goes standard -- system output goes there. And create an ATM in here, and you will make the

ATM run. So how do you run the ATM?

So, what happens in run is, you run forever? ATM doesn't stop any time. What you can do is

you can ask when somebody walks into the ATM, you can say what's the account ID. Type the

account ID. You can get that account, so of course, if the account already is wrong it says,

throw exception. You can say OK, what's the password, get the password. You take the

password, if it's wrong you throw exception. Then you can say, here's your balance today.

What do you want to do? If you want to withdraw or deposit. If you want to withdraw you can

do a minus number, if you want to deposit it will be a plus number. Then you can post that into

your balance.

Everybody got the thing for ATMs? So, assume activity trace. So somebody comes and gives

the account ID, at least gives the password, and say that they have $100,000 and say how

much you withdraw, $200 withdraw. And you get the balance in here. Looks nice. It works.

So I need to run multiple ATMs. Assume I am in a place that I actually want to put two ATMs or



four ATMs next to each other. So how am I going to do that?

So, in order to do that, there's concurrency in Java. So one way to get Java concurrency is

you can extend this class thread and define a method run. Or you have interface called [?

Runabout, ?] that you can basically use that interface and has estimated run. Then when you

have made that run and when [UNINTELLIGIBLE PHRASE] start, that will get started. Very

simple way to do that. Let me give you an example.

Little bit of a digression. Why do you want concurrent programming? A lot of times, natural

application structure is not sequential. The world is not sequential. And then try to

sequentialize the world sometimes means it's much more complicated [UNINTELLIGIBLE] So

sometimes it's natural to do things in parallel. A lot of times the sequentiality's an artifact of the

programming language, because we use a language like that. Sometimes doing things in

parallel ways, you can really improve things like throughput and responsiveness. If you are

doing IO, if you're doing sequential programming [UNINTELLIGIBLE PHRASE] you're just

twiddling your thumb waiting for the IO to come back. In parallel things actually, you can do

parallel IO and you can do a lot cool stuff in here.

Of course, in this class, if you are multicore and multiprocessor multicore, you can get parallel

executions. So there are more than one [UNINTELLIGIBLE PHRASE]. Also, if you are building

a very large distributed system, concurrent programming is, you had to deal with, especially

dealing with things like client-server type of applications.

So here's our original ATMs. So to go to multiple ATMs, I am doing a few changes. I'll go back

and forth a few times. So the first thing I have done is I have sett here number of ATMs to be

four. Can you really read it from back there?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: OK, good. Then what I have done is, in here, I did four ATMs here, and then I put it in a loop

to create this ATM, so I created four ATMs in here and start four ATMs, basically. Then of

course I extended these ATMs so now we will extend [? up a thread. ?] And I haven't started

that. And the ATMs [UNINTELLIGIBLE] ATMs, so it's great. So now what happens is I assume

now there's two guys going, both ATMs, at least [UNINTELLIGIBLE] been. Then enter the

account and [UNINTELLIGIBLE PHRASE], that's works really well. No problem. So we have

two ATMs, two people actually went on parallel. One then deposited some money, other one

took money, great.



Now, as MIT students, they want to do something, they can hack it. So, [UNINTELLIGIBLE]

basically [UNINTELLIGIBLE] went [UNINTELLIGIBLE], and basically what [UNINTELLIGIBLE

PHRASE] enter the password, and they said I want to get $100. I would get $90, basically. So

he had $100 in his account. Then what he got was, so he actually managed to get $180 out of

an account that had $100. This is not a good ATM, at least from the bank's perspective. So

what went wrong?

If you look at what happened in activity trace, so we print 100 in here. And then you said, you

want to read this value, you both entered 90, right here. And this account balance

[UNINTELLIGIBLE PHRASE] because the account balance was 100. You saw also the account

balance [UNINTELLIGIBLE PHRASE], yes, it is [UNINTELLIGIBLE]. Then each went post, it

went to 10 -- this also did a post of the same time, result came both 10. How could this

happen?

So that way it can happen is, so in the ATM, the [UNINTELLIGIBLE PHRASE], what happens is

v is minus 90, and this post [UNINTELLIGIBLE] also when you start a v it's minus 90. Then you

treat the balance as 100. So in this interleaving, and so it is the plus, you get 10. Also, before

you write it out, you read the balance in the other interleaving, you've got the balance as 100,

and you do the plus as 10. So it destroyed the balance, now balance became 10, and also this

guy also wrote the balance -- it doesn't matter, it got 10 updated twice, and that's it. So you

can have interleaving in here, that actually did something that's not a signature program. And

you're in big trouble. So in order to get out of that, problem is all interleaving of threads are not

acceptable and current. What you want is some kind of a sequential-looking performance,

even though you'd get parallel, you don't want to do all these interleavings in here.

So in order to do that, Java provides this synchronization mechanism. That's just strict

interleaving. So, what synchronizations do is, they ensure safety for shared updates. So if

you're sharing something, so it avoids races, basically. It avoids this old interleaving ordering

here. Also, it allows you to coordinate actions among shared space, basically. Because at

some point people have to coordinate and take that parallel computation. With notification you

can do that.

So, when multiple threads access the shared resource, simultaneously, it's safe only if all

accesses have no effect on the resource. Basically, we're reading variables. But everybody

can read the same variable, because you're not changing anything. I can do that. Or all



accesses are idempotent. So you can say, we can do that. Or only one access at a time.

Which is called mutual exclusion. So in this case we are changing something. It's not that

important. So we have to actually do mutual exclusion.

So here's a way to look at safety problems. Here might be an algorithm that you and your

roommate have. So you arrive home, look in the fridge, no milk. Leave for grocery, arrive at

grocery, buy milk and arrive at home. The minute you leave for grocery, your roommate

arrives and do this. Then what do you have is you have too much milk.

So here's the problem in a little bit more abstract sense. And you need a way to synchronize

this. So how about this. No milk and no note. So you leave a note before you actually leave the

house and buy milk, and then you come back and remove the note. Does this work?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: I mean here also you can do that, no milk and no note. So both are started. We would leave a

note, and these things can happen at the same time. There's a little bit of things saying OK,

why didn't you see your roommate. They go buy milk, he goes to buy milk and you have too

much milk too.

So the way to do this in Java is this notion of critical section. Critical section is where only one

thread can be in it at a given time. The way you can do it with Java is, you can put

synchronized in front of the method. And you do that method, only one person can be

executing that method at any one time. So in here I would say get balance and post so you

can synchronize.

So when you do that, what happens is -- so in here you read. No problem, you can do this

parallel. You can do this in parallel. And then you say, first take out post in here. And this [?

takes out ?] post. Because of synchronization these things can't have an order, because this

has to happen in some order. Either this happens first and this has to finish before this one. At

that point you can actually -- what happened now? Are we happy?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah. At least banks realize -- bank's book is correct. Because it realizes, here is more money.

But actually it let you take more money than your account had. So at least it got that value

right. But what happened was, why is this happening now?



AUDIENCE: You want the check covered.

PROFESSOR: OK, you want to check also. Good. So the key thing is, here we didn't check. So you have a

negative bank balance happening. So this is a problem with atomacity. Because synchronized

methods execute the body at atomic units. So when that happens, the entire thing of body

happens without anybody else [? modifying. ?] That's the only thing that's happening at any

given time. The code read [UNINTELLIGIBLE] you chose is probably too small in this case.

What we need to do is, we need to basically have synchronizing not on the method but a lot

more [UNINTELLIGIBLE] in there, so you have to do block synchronization. So synchronized

keywords actually work like this too. You can say instead of doing a method, you can just

synchronize account and all those things happen synchronously within that block.

So, now what we have done is we have built a bigger atomic unit. So here's the programming

here. So here's the synchronized unit in here. So what we did was, we say instead of these

synchronized and these synchronize separately, both of these computations have to happen

atomically. So when I check our bank balance, we can't do anything else.

So now what happens? So yeah, in this situation you're reading, reading, and you get

synchronized account in here, and I do account balance plus [? well ?] and post the account.

So in here I go to 10, I do that. If I start the other one here, I have to wait till that entire

synchronization is over before I do that. Of course, I don't have enough balance, so I throw

exception.

Are we still happy? Is there issue on this one? I mean, I guess -- assume you can do

something clever, but I haven't done that. But there's one issue in here. Which, when you start

it's just, balance is 100. So in this one, say balance is 100. You go type it and then voila, you

type it and then, sorry, I don't have money. So that's not nice, because if you've got the

balance you should be able to get that. So how we deal with that?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: So that's probably the best solution to that because we can only log into one. But in this

example I assume what we are doing. How can we deal with this one?

AUDIENCE: There are two ways of doing it. One is to put the whole thing [INAUDIBLE PHRASE] section.

The other way is to notify somebody that the [UNINTELLIGIBLE PHRASE].

PROFESSOR: [UNINTELLIGIBLE PHRASE]. So what I can do is I can say OK, wait a minute. I am actually



going to make the critical section even bigger. So now I print the balance before I do that. So

the entire thing is critical section. I print the balance off and then go ahead and withdraw that.

So what might happen in this case?

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: Yeah. That's the issue of a little bit of waiting. So what happens is, in here. You do this one,

and you do synchronized account. And you put the balance and other one do synchronized

and you ask the question. In here. And you start thinking. We can start thinking that my

machine is not responsive, it's just waiting for the critical section started. [UNINTELLIGIBLE]

and you have this [? IOUN ?] sitting in the middle. That's not good either. So he has a

performance issue. So that's not a good way of doing that. So you don't get any response in

here. So you can make this atomic [? radius ?] but there's a price you'll pay by making it

[UNINTELLIGIBLE PHRASE] large.

So here's another thing we want to do. I want to do something that can transfer account

balance from one account to another. So I might do that if I have a method in here to transfer

[UNINTELLIGIBLE] account, this amount. So what I do is, I synchronize from account. I say, I

get balance in here. If the balance is available, I can synchronize the two accounts and force it

there. See any problems?

So let's see what happenes. So assume I want to transfer 10 to Ben's account and Ben wants

to transfer 20 to Alyssa's account. So what happens is, this goes -- get the value in here, and

you synchronize to two and say OK, great. Now what happens is, in here, in from, I am holding

a Alyssa's account. There I am holding Ben's account. Now, inside I want to synchronize for

Alyssa. And I'm still [UNINTELLIGIBLE] when I -- wait until Alyssa got released. And he says I

want to wait till Ben got released. And nobody's going to release, and you're hung. You are in

what you call a deadlock situation. That's a deadlock. So you have to be very careful when you

do synchronizing. If you do multiple synchronization, the easiest thing you can do is, you do it

in some order. And end up in a a deadlock situation. This is a very common way of parallel

programs doing that.

So how to avoid deadlock? Because deadlock is, there's a cycle in locking graph. So

somebody's going to lock somebody, he's going to lock that person, and we have a cycle. You

can end up in deadlock situation.



So standard solution for that is, you take locks in some kind of canonical order. You don't take

in arbitary order. So it's some kind of a -- you have some base in, OK, if you are taking this

lock, you have to have, after that, you can take a higher order lock. So you have to have some

kind of order in here. Acquire in increasing order and release in decreasing order. So you

have some kind of force in here.

This ensures deadlock freedom most of the time, but it's not that easy to do a lot of the time.

Because your program might not fit into this nice ordering a lot of times, and then sometimes

you realize that you had locked something and at that time it's too late when you realize it. And

then it has a different order. So this is, you have to sometime do some changes to basically

make the program work like this.

So in here, what you can do is, in the program you can associate some kind of a rank, and

when you put in account, you put the rank to the account number. So you have some kind of

ordering in here. Then what you have is, you always get the first, highest rank one before you

go the next one. So there's some ordering in here. So at least then we'll be at least forced into

some ordering in here.

AUDIENCE: Is there a way of [UNINTELLIGIBLE PHRASE] deadlock [INAUDIBLE PHRASE].

PROFESSOR: Not statically. Because most of the time that means you have to know all the possible control

profile, to do that. And, for example, there are some tools that can -- because you might know

that, for example, assume you are trying to enforce some ordering of locks. But it's not the

software, it's the locking software, that doesn't know about those. You can actually write a

locking software that will tell you, like look, you are trying to acquire locking out of order, out of

this locking order. Most of the time you might be OK because it might not hit, but [? we

assume ?] that if you are doing unsafe thing that might work, so.

So you can put some dynamic checks that might warn you that you might be in a situation, but

it doesn't guarantee you. So deadlock is something, you have to basically -- there's no nice

tools for. Basically, it's almost a software [? methodology. ?] So, for example, you can impose

a software methodology to say, I'm following this convention and that will guarantee me

deadlock freedom. So one good convention is this, basically some order in here.

So, another interesting thing and hard thing is race conditions. These are non-deterministic

timing dependent, and cause data corruption, crashes that are impossible to detect. So the

problem with race conditions is the minute you put your debug, or put any debugging things,



race conditions goes away. It comes back when you are in it all and you're debugging

[UNINTELLIGIBLE PHRASE]. It happens again because it's basically an independent thing. In

fact, I have this interesting experience with myself.

A long time ago I was working at Microsoft and I worked two summers. In one summer I was

working on their LAN manager and network manager, and there's a bug that after you run the

network manager for some time it just freezes. That's not a nice behavior to have if you are

running your network. That bug lasted the entire year. And at the end they had, I think, a

$2,000 bounty on that bug. Because the minute you do any instrumentation, the [? bug isn't ?]

[UNINTELLIGIBLE] When you have more instrumentation and have 100 machines running,

heavily, hitting another machine. Once in a while voila. It freezes. And you have no idea why it

happened. That was so hard to debug because there's nothing you could do, because any

time you do any changes, the bug goes away. You had to be very careful because these

things are not easy to find, and happen intermittently. And very hard to debug. So having good

discipline and good design really helps to get rid of it. These are not something you can go

through like program debugs, it [UNINTELLIGIBLE] cycle. If you read that cycle, it's a very

slow cycle. The best way to do that is get the design right first.

So what's a data race? So I assume I had this program like that. So I read [? hit ?] in there,

and then I modify and write in this. This doesn't have to be in two statements. If we

[UNINTELLIGIBLE] same statement, the compiler might put it in register, read, update and

modify and write. So it might just look hits equals hits plus 1 and hits equals hits plus 1 on the

cycle. Doesn't have to [? have temporary. ?] and in your call. Because the compiler puts a [?

temporary ?] in there.

And if you execute like this you're happy. But if you get excluded in this order, I don't get at it

two times, I only get it because I read hit the order given values. This adds once and writes.

And this also adds one to [? the ordinary value ?] and write. So I only get it increased by one

and you are in a bad situation.

The problems with data races is this non-determinism. We ensured [UNINTELLIGIBLE] that

this mutual exclusion. So if you have same data access, make sure that they are in the mutual

exclude region. You can basically see that it has access to old objects.

Before you go there, one interesting thing is this is just a problem with all parallel programs. So

at the beginning you say OK, I'm going to have this nice mutual excluded, lock ordered



program. You write this. It worked correctly, beautifully, but run dog slow because now we are

huge critical sections. Everybody's waiting in data and then someone says I want to run fast. I

think I don't need this lock.

It doesn't seem to be, so keep removing locks, making critical sections smaller and stuff like

that. That's where all the problems start cropping up, because all this nice design goes to the

dogs when you have performance issues. So when you realize that, you want to write this nice

program, nice large critical sections, stuff like that. The programs will work correctly. But run

like a dog because now it's sequential in many cases because you are doing this. Then you go

and say OK, I want to run parallel. Eh, this is OK. That's when problems start creeping up. So

make sure that when you get a discipline, as you can go into the performance improvement

but you still maintain at least some part of discipline. That's the hard thing.

So I want to switch gears a little bit to talk about a classic problem. It's called dining

philosophers problem. So, there are five philosophers sitting around a table. Between each of

the philosophers there's a chopstick. So each philosopher do two things. He thinks -- he or she

thinks or he or she eats. So the philosopher thinks for a while. And then the philosopher is

hungry. She stops thinking and she picks up a left and right chopstick, eats, and puts the

chopsticks down. He cannot eat until they have both chopsticks right in hand because you

can't eat with one chopstick. So you have to wait until you get both chopsticks. When you are

done, you put the chopsticks down. Then after you're done, you go back to thinking again for a

while and come back to eating.

That's the classic problem. So how to write that, record that? You can have philosopher

extend thread, and [UNINTELLIGIBLE PHRASE] philosopher you have a chopstick in here,

and instead of philosopher buy left and right chopstick. Then what you do is you create a

number of philosophers and you get a new chopstick and start to the left and you go to the

other philosophers assigning left and right chopsticks in here, and then you start the

philosophers going. So you just set up a chopstick [? on it, ?] and then you share the chopstick

and do that.

So here is what a [UNINTELLIGIBLE] philosopher does. So I am here, I'm taking my left

chopstick, I'm taking my right chopstick and I'm going to eat and I'm done eating and I'm

putting down there. What will happen in this one?

AUDIENCE: [INAUDIBLE PHRASE].



PROFESSOR: In what situation, [UNINTELLIGIBLE PHRASE]. [UNINTELLIGIBLE PHRASE], but right

technical though is different.

AUDIENCE: [INAUDIBLE PHRASE].

PROFESSOR: You end up in a deadlock because [UNINTELLIGIBLE PHRASE] we will pick up the left

chopstick suddenly, and they all try to take the right chopstick. There's no right chopstick and

nobody has right chopstick and everybody waiting for somebody to drop the chopstick, that's

not going to happen. So you have a problem. Second way to solve that is this, and you say

OK. The problem is everybody trying to pick up this chopstick. I will put unique variable table,

unique object table. If anybody want to eat, I need to own the table. What will this do?

AUDIENCE: [INAUDIBLE PHRASE].

AUDIENCE: It prevents two people who wouldn't normally interact from eating at the same table.

PROFESSOR: Yes. So what happens is only one person can eat at a time. Which works perfectly, beautifully,

sequential. So, you wonder if one philosopher eating, the person or [? posit ?] can eat. But

you're not allowed to because the chopstick in there. So one way of doing that is

sequentialized large regions, with putting these critical sections in there. This works. Not

greatly, but it will work.

Another thing is, of course, what I point out to have some kind of ordering. So you put some

position ordering and saying if you are sitting in even position, you're the first to pick the left

one, if you are putting an odd position, you're supposed to pick the right one. So in some

sense, it got [UNINTELLIGIBLE PHRASE] go here, the person go here, so only one can get

that so you don't have ordering. At least between those two you can maintain that. So you can

do something but you have to figure out what the right ordering in here. This is not a linear list,

linear ordering for this circuit. But you can copy ordering and say OK, look, if you do that this

new way, you can run into a deadlock situation.

There are a lot of types of synchronizations in Java, and then tomorrow you learn more

different type of synchronization with available using [UNINTELLIGIBLE PHRASE], so using

MPI. But there are a lot of potential problems you are worried about. Deadlock you have to

worry about. Two or more threads stop, wait for each other forever. Livelock. What livelock

means is two or more threads basically trying to do something but never made progress. So

good example.



So assume I go -- it's like sometimes you try to cross each other on the road and you go into

them and say oops, or you both say oops, sorry, [UNINTELLIGIBLE] You get into a situation

that you try to go something, both you start to move a little bit and then do that and you keep

doing that forever and ever, doing it, right. So that can happen. If you program right, you can

actually try to avoid deadlock by doing that, but both no one making forward progress, so

that's called livelock.

So another thing that's called starvation. So the ordering is a very good example. So ordering

says the higher order guy always gets the lock for the lower guy. So assume you have

thousands of things and everybody's trying to do something. If you have an lower number, you

probably never get to around to get picked up because always if higher order person has, that

person will get the lock. So if they're ordering constraint in there, you can be in situation that

some people always get and others never get -- there's no fairness in that, because when you

some ordering constraints. So again, lack of fairness.

Of course, race conditions. So you didn't realize that the same object is accessed by multiple

people without being in a particular section. That's the key -- I mean don't try to do fancy

things by letting multiple people have access to same thing. This is not much of issue on

distributed memory machines because there's only you access to your memory. But the

problem there is if you keep values, you suddenly start giving it to everybody and say go play,

assuming that only one person have access to it. So multiple people might be modifying it and

then what are you going to do. So that issue is there. So when you are doing, using data, you

got to be very careful who holds it and at what time.

So, concurrency and parallelism are important concepts in comparison beyond what we are

doing in here. Concurrency can simplify programming beyond anything. It's very hard to

understand and debug concurrent programs. That's the entire reason that we are still doing

sequential programming and this is entire reason that multiple people are looking at it in a very

-- people are scared because writing and getting concurrent program right is probably an

order of magnitude harder than trying to get sequential programs right. This is issue.

Parallelism is critical for high performance. I mean, it was huge for supercomputers in national

labs and now it's becoming everybody's issue because of multicore. Basically, you need to

understand concurrent and concurrence issues, it's the basis of writing parallel programs. So,

you will run into all these issues, deadlock, you can deadlock on limited access on Cell, you



can deadlock on messages. So everybody is waiting for somebody else to send you a

message and nobody's sending a message because that other guy will send you a message.

You can [? easier ?] do that in a message in there, and a lot of times you can deadlock in that.

So this lecture we kind of did concurrent programming, how to write a concurrent program. We

are going to switch gears and start going into parallelism next. But keep these issues in my

mind when you are writing parallel programs. Have things like 617 we had very good discipline

on testing and methodology of development. You probably won't have kind of discipline on

how to do parallelism. So there are many ways -- next few lectures we'll cover many different

ways of doing parallelism. Parallelism's a very powerful tool, but if you don't use it in a

disciplined way, you will not be able to debug these [UNINTELLIGIBLE] I mean you run into

bugs that are so subtle, so difficult it's very hard to find. You don't want in that situation. So

having a good design, good disciplining programming will actually get you working correct

program. Good. That's all I have for today. You can spend some time filling out this one. Just

put your name down and you're done.


