9. Numerical linear algebra background

- matrix structure and algorithm complexity
- solving linear equations with factored matrices
- LU, Cholesky, LDL^{\top} factorization
- block elimination and the matrix inversion lemma
- solving underdetermined equations

Matrix structure and algorithm complexity

cost (execution time) of solving $A x=b$ with $A \in \mathbf{R}^{n \times n}$

- for general methods, grows as n^{3}
- less if A is structured (banded, sparse, Toeplitz, . . .)

flop counts

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm: express number of flops as a (polynomial) function of the problem dimensions, and simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers
- useful as a rough estimate of complexity
vector-vector operations $\left(x, y \in \mathbf{R}^{n}\right)$
- inner product $x^{T} y: 2 n-1$ flops (or $2 n$ if n is large)
- sum $x+y$, scalar multiplication αx : n flops matrix-vector product $y=A x$ with $A \in \mathbf{R}^{m \times n}$
- $m(2 n-1)$ flops (or $2 m n$ if n large)
- $2 N$ if A is sparse with N nonzero elements
- $2 p(n+m)$ if A is given as $A=U V^{T}, U \in \mathbf{R}^{m \times p}, V \in \mathbf{R}^{n \times p}$ matrix-matrix product $C=A B$ with $A \in \mathbf{R}^{m \times n}, B \in \mathbf{R}^{n \times p}$
- $m p(2 n-1)$ flops (or $2 m n p$ if n large)
- less if A and/or B are sparse
- $(1 / 2) m(m+1)(2 n-1) \approx m^{2} n$ if $m=p$ and C symmetric

Linear equations that are easy to solve

diagonal matrices ($a_{i j}=0$ if $i \neq j$): n flops

$$
x=A^{-1} b=\left(b_{1} / a_{11}, \ldots, b_{n} / a_{n n}\right)
$$

lower triangular $\left(a_{i j}=0\right.$ if $\left.j>i\right): n^{2}$ flops

$$
\begin{aligned}
x_{1} & :=b_{1} / a_{11} \\
x_{2} & :=\left(b_{2}-a_{21} x_{1}\right) / a_{22} \\
x_{3} & :=\left(b_{3}-a_{31} x_{1}-a_{32} x_{2}\right) / a_{33} \\
& : \\
x_{n} & :=\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots-a_{n, n-1} x_{n-1}\right) / a_{n n}
\end{aligned}
$$

called forward substitution
upper triangular ($a_{i j}=0$ if $j<i$): n^{2} flops via backward substitution
orthogonal matrices: $A^{-1}=A^{T}$

- $2 n^{2}$ flops to compute $x=A^{T} b$ for general A
- less with structure, e.g., if $A=I-2 u u^{T}$ with $\|u\|_{2}=1$, we can compute $x=A^{T} b=b-2\left(u^{T} b\right) u$ in $4 n$ flops

permutation matrices:

$$
a_{i j}= \begin{cases}1 & j=\pi_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is a permutation of $(1,2, \ldots, n)$

- interpretation: $A x=\left(x_{\pi_{1}}, \ldots, x_{\pi_{n}}\right)$
- satisfies $A^{-1}=A^{T}$, hence cost of solving $A x=b$ is 0 flops example:

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad A^{-1}=A^{T}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

The factor-solve method for solving $A x=b$

- factor A as a product of simple matrices (usually 2 or 3):

$$
A=A_{1} A_{2} \cdots A_{k}
$$

(A_{i} diagonal, upper or lower triangular, etc)

- compute $x=A^{-1} b=A_{k}^{-1} \cdots A_{2}^{-1} A_{1}^{-1} b$ by solving k 'easy' equations

$$
A_{1} x_{1}=b, \quad A_{2} x_{2}=x_{1}, \quad \ldots, \quad A_{k} x=x_{k-1}
$$

cost of factorization step usually dominates cost of solve step equations with multiple righthand sides

$$
A x_{1}=b_{1}, \quad A x_{2}=b_{2}, \quad \ldots, \quad A x_{m}=b_{m}
$$

cost: one factorization plus m solves

LU factorization

every nonsingular matrix A can be factored as

$$
A=P L U
$$

with P a permutation matrix, L lower triangular, U upper triangular cost: $(2 / 3) n^{3}$ flops

Solving linear equations by LU factorization.
given a set of linear equations $A x=b$, with A nonsingular.

1. $L U$ factorization. Factor A as $A=P L U\left((2 / 3) n^{3}\right.$ flops $)$.
2. Permutation. Solve $P z_{1}=b$ (0 flops).
3. Forward substitution. Solve $L z_{2}=z_{1}$ (n^{2} flops).
4. Backward substitution. Solve $U x=z_{2}$ (n^{2} flops).
cost: $(2 / 3) n^{3}+2 n^{2} \approx(2 / 3) n^{3}$ for large n

sparse LU factorization

$$
A=P_{1} L U P_{2}
$$

- adding permutation matrix P_{2} offers possibility of sparser L, U (hence, cheaper factor and solve steps)
- P_{1} and P_{2} chosen (heuristically) to yield sparse L, U
- choice of P_{1} and P_{2} depends on sparsity pattern and values of A
- cost is usually much less than $(2 / 3) n^{3}$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

Cholesky factorization

every positive definite A can be factored as

$$
A=L L^{T}
$$

with L lower triangular
cost: $(1 / 3) n^{3}$ flops

Solving linear equations by Cholesky factorization.
given a set of linear equations $A x=b$, with $A \in \mathbf{S}_{++}^{n}$.

1. Cholesky factorization. Factor A as $A=L L^{T}\left((1 / 3) n^{3}\right.$ flops $)$.
2. Forward substitution. Solve $L z_{1}=b$ (n^{2} flops).
3. Backward substitution. Solve $L^{T} x=z_{1}$ (n^{2} flops).
cost: $(1 / 3) n^{3}+2 n^{2} \approx(1 / 3) n^{3}$ for large n

sparse Cholesky factorization

$$
A=P L L^{T} P^{T}
$$

- adding permutation matrix P offers possibility of sparser L
- P chosen (heuristically) to yield sparse L
- choice of P only depends on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than $(1 / 3) n^{3}$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

$\operatorname{LDL}^{\top}$ factorization

every nonsingular symmetric matrix A can be factored as

$$
A=P L D L^{T} P^{T}
$$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks
cost: $(1 / 3) n^{3}$

- cost of solving symmetric sets of linear equations by LDL^{\top} factorization: $(1 / 3) n^{3}+2 n^{2} \approx(1 / 3) n^{3}$ for large n
- for sparse A, can choose P to yield sparse L; cost $\ll(1 / 3) n^{3}$

Equations with structured sub-blocks

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \tag{1}\\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
$$

- variables $x_{1} \in \mathbf{R}^{n_{1}}, x_{2} \in \mathbf{R}^{n_{2}}$; blocks $A_{i j} \in \mathbf{R}^{n_{i} \times n_{j}}$
- if A_{11} is nonsingular, can eliminate $x_{1}: x_{1}=A_{11}^{-1}\left(b_{1}-A_{12} x_{2}\right)$; to compute x_{2}, solve

$$
\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) x_{2}=b_{2}-A_{21} A_{11}^{-1} b_{1}
$$

Solving linear equations by block elimination.
given a nonsingular set of linear equations (1), with A_{11} nonsingular.

1. Form $A_{11}^{-1} A_{12}$ and $A_{11}^{-1} b_{1}$.
2. Form $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$ and $\tilde{b}=b_{2}-A_{21} A_{11}^{-1} b_{1}$.
3. Determine x_{2} by solving $S x_{2}=\tilde{b}$.
4. Determine x_{1} by solving $A_{11} x_{1}=b_{1}-A_{12} x_{2}$.

dominant terms in flop count

- step 1: $f+n_{2} s$ (f is cost of factoring $A_{11} ; s$ is cost of solve step)
- step 2: $2 n_{2}^{2} n_{1}$ (cost dominated by product of A_{21} and $A_{11}^{-1} A_{12}$)
- step 3: $(2 / 3) n_{2}^{3}$
total: $f+n_{2} s+2 n_{2}^{2} n_{1}+(2 / 3) n_{2}^{3}$

examples

- general $A_{11}\left(f=(2 / 3) n_{1}^{3}, s=2 n_{1}^{2}\right)$: no gain over standard method

$$
\# \text { flops }=(2 / 3) n_{1}^{3}+2 n_{1}^{2} n_{2}+2 n_{2}^{2} n_{1}+(2 / 3) n_{2}^{3}=(2 / 3)\left(n_{1}+n_{2}\right)^{3}
$$

- block elimination is useful for structured $A_{11}\left(f \ll n_{1}^{3}\right)$ for example, diagonal $\left(f=0, s=n_{1}\right)$: \#flops $\approx 2 n_{2}^{2} n_{1}+(2 / 3) n_{2}^{3}$

Structured matrix plus low rank term

$$
(A+B C) x=b
$$

- $A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times p}, C \in \mathbf{R}^{p \times n}$
- assume A has structure ($A x=b$ easy to solve)
first write as

$$
\left[\begin{array}{cc}
A & B \\
C & -I
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

now apply block elimination: solve

$$
\left(I+C A^{-1} B\right) y=C A^{-1} b,
$$

then solve $A x=b-B y$
this proves the matrix inversion lemma: if A and $A+B C$ nonsingular,

$$
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1}
$$

example: A diagonal, B, C dense

- method 1: form $D=A+B C$, then solve $D x=b$
cost: $(2 / 3) n^{3}+2 p n^{2}$
- method 2 (via matrix inversion lemma): solve

$$
\begin{equation*}
\left(I+C A^{-1} B\right) y=C A^{-1} b, \tag{2}
\end{equation*}
$$

then compute $x=A^{-1} b-A^{-1} B y$
total cost is dominated by (2): $2 p^{2} n+(2 / 3) p^{3}$ (i.e., linear in n)

Underdetermined linear equations

if $A \in \mathbf{R}^{p \times n}$ with $p<n, \boldsymbol{r a n k} A=p$,

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbf{R}^{n-p}\right\}
$$

- \hat{x} is (any) particular solution
- columns of $F \in \mathbf{R}^{n \times(n-p)}$ span nullspace of A
- there exist several numerical methods for computing F (QR factorization, rectangular LU factorization, ...)

MIT OpenCourseWare
|http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization

Fall 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

