Chance constrained optimization

- chance constraints and percentile optimization
- chance constraints for log-concave distributions
- convex approximation of chance constraints

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro

Chance constraints and percentile optimization

• 'chance constraints' (η is 'confidence level'):

 $\operatorname{Prob}(f_i(x,\omega) \le 0) \ge \eta$

- convex in some cases (later)
- generally interested in $\eta=0.9,\ 0.95,\ 0.99$
- $\eta = 0.999$ meaningless (unless you're sure about the distribution tails)
- percentile optimization (γ is ' η -percentile'):

 $\begin{array}{ll} \text{minimize} & \gamma \\ \text{subject to} & \mathbf{Prob}(f_0(x,\omega) \leq \gamma) \geq \eta \end{array}$

- convex or quasi-convex in some cases (later)

Value-at-risk and conditional value-at-risk

• value-at-risk of random variable z, at level η :

$$\operatorname{VaR}(z;\eta) = \inf\{\gamma \mid \operatorname{Prob}(z \leq \gamma) \geq \eta\}$$

- chance constraint $\operatorname{Prob}(f_i(x,\omega) \leq 0) \geq \eta$ same as $\operatorname{VaR}(f_i(x,\omega);\eta) \leq 0$
- conditional value-at-risk:

$$\mathbf{CVaR}(z;\eta) = \inf_{\beta} \left(\beta + 1/(1-\eta) \mathbf{E}(z-\beta)_{+}\right)$$

-
$$\mathbf{CVaR}(z;\eta) \ge \mathbf{VaR}(z;\eta)$$
 (more on this later)

CVaR interpretation

(for continuous distributions)

• in **CVaR** definition, $\beta^* =$ **VaR** $(z; \eta)$:

$$0 = \frac{d}{d\beta} (\beta + 1/(1 - \eta) \mathbf{E}(z - \beta)_{+}) = 1 - 1/(1 - \eta) \mathbf{Prob}(z \ge \beta)$$

so $\operatorname{\mathbf{Prob}}(z \ge \beta^{\star}) = 1 - \eta$

• conditional tail expectation (or expected shortfall)

$$\begin{aligned} \mathbf{E}(z|z \ge \beta^{\star}) &= \mathbf{E}(\beta^{\star} + (z - \beta^{\star})|z \ge \beta^{\star}) \\ &= \beta^{\star} + \mathbf{E}((z - \beta^{\star})_{+}) / \operatorname{Prob}(z \ge \beta^{\star}) \\ &= \mathbf{CVaR}(z;\eta) \end{aligned}$$

Chance constraints for log-concave distributions

• suppose

-
$$\omega$$
 has log-concave density $p(\omega)$
- $C = \{(x, \omega) \mid f(x, \omega) \leq 0\}$ is convex in (x, ω)

• then

$$\operatorname{Prob}(f(x,\omega) \le 0) = \int 1((x,\omega) \in C)p(\omega) \ d\omega$$

is log-concave, since integrand is

• so chance constraint $\mathbf{Prob}(f(x,\omega) \leq 0) \geq \eta$ can be expressed as convex constraint

$$\log \operatorname{Prob}(f(x,\omega) \le 0) \ge \log \eta$$

Linear inequality with normally distributed parameter

• consider
$$a^T x \leq b$$
, with $a \sim \mathcal{N}(\bar{a}, \Sigma)$

• then
$$a^Tx - b \sim \mathcal{N}(\bar{a}^Tx - b, x^T\Sigma x)$$

• hence $\mathbf{Prob}(a^T x \le b) = \Phi\left(\frac{b - \bar{a}^T x}{\sqrt{x^T \Sigma x}}\right)$

• and so

$$\mathbf{Prob}(a^T x \le b) \ge \eta \iff b - \bar{a}^T x \ge \Phi^{-1}(\eta) \|\Sigma^{1/2} x\|_2$$

a second-order cone constraint for $\eta \ge 0.5$ (*i.e.*, $\Phi^{-1}(\eta) \ge 0$)

Portfolio optimization example

- $x \in \mathbf{R}^n$ gives portfolio allocation; x_i is (fractional) position in asset i
- x must satisfy $\mathbf{1}^T x = 1$, $x \in \mathcal{C}$ (convex portfolio constraint set)
- portfolio return (say, in percent) is $p^T x$, where $p \sim \mathcal{N}(\bar{p}, \Sigma)$ (a more realistic model is p log-normal)
- maximize expected return subject to limit on probability of loss

• problem is

$$\begin{array}{ll} \mbox{maximize} & \mathbf{E} \, p^T x \\ \mbox{subject to} & \mathbf{Prob}(p^T x \leq 0) \leq \beta \\ & \mathbf{1}^T x = 1, \quad x \in \mathcal{C} \end{array}$$

• can be expressed as convex problem (provided $\beta \leq 1/2$)

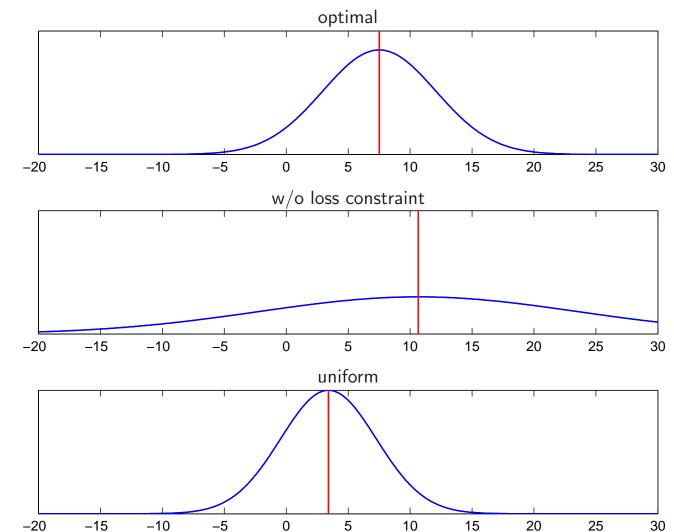
$$\begin{array}{ll} \text{maximize} & \bar{p}^T x\\ \text{subject to} & \bar{p}^T x \geq \Phi^{-1}(1-\beta) \|\Sigma^{1/2} x\|_2\\ & \mathbf{1}^T x = 1, \quad x \in \mathcal{C} \end{array}$$

(an SOCP when C is polyhedron)

Example

- n = 10 assets, $\beta = 0.05$, $\mathcal{C} = \{x \mid x \succeq -0.1\}$
- compare
 - optimal portfolio
 - optimal portfolio w/o loss risk constraint
 - uniform portfolio $(1/n)\mathbf{1}$

portfolio	$\mathbf{E} p^T x$	$\operatorname{\mathbf{Prob}}(p^T x \le 0)$
optimal	7.51	5.0%
w/o loss constraint	10.66	20.3%
uniform	3.41	18.9%



return distributions:

Convex approximation of chance constraint bound

- assume $f_i(x,\omega)$ is convex in x
- suppose $\phi : \mathbf{R} \to \mathbf{R}$ is nonnegative convex nondecreasing, with $\phi(0) = 1$
- for any $\alpha_i > 0$, $\phi(z/\alpha_i) \ge 1(z > 0)$ for all z, so

 $\mathbf{E}\phi(f_i(x,\omega)/\alpha_i) \ge \mathbf{Prob}(f_i(x,\omega) > 0)$

• hence (convex) constraint

$$\mathbf{E}\,\phi(f_i(x,\omega)/\alpha_i) \le 1-\eta$$

ensures chance constraint $\operatorname{Prob}(f_i(x,\omega) \leq 0) \geq \eta$ holds

• this holds for any $\alpha_i > 0$; we now show how to optimize over α_i

• write constraint as

$$\mathbf{E}\,\alpha_i\phi(f_i(x,\omega)/\alpha_i) \le \alpha_i(1-\eta)$$

- (perspective function) $v\phi(u/v)$ is convex in (u,v) for v > 0, nondecreasing in u
- so composition $\alpha_i \phi(f_i(x, \omega) / \alpha_i)$ is convex in (x, α_i) for $\alpha_i > 0$
- hence constraint above is convex in x and α_i
- so we can optimize over x and $\alpha_i > 0$ via convex optimization
- yields a convex stochastic optimization problem that is a conservative approximation of the chance-constrained problem
- we'll look at some special cases

Markov chance constraint bound

• taking $\phi(u) = (u+1)_+$ gives Markov bound: for any $\alpha_i > 0$,

$$\mathbf{Prob}(f_i(x,\omega) > 0) \le \mathbf{E}(f_i(x,\omega)/\alpha_i + 1)_+$$

• convex approximation constraint

$$\mathbf{E}\,\alpha_i(f_i(x,\omega)/\alpha_i+1)_+ \le \alpha_i(1-\eta)$$

can be written as

$$\mathbf{E}(f_i(x,\omega) + \alpha_i)_+ \le \alpha_i(1-\eta)$$

• we can optimize over x and $\alpha_i \geq 0$

Interpretation via conditional value-at-risk

• write conservative approximation as

$$\frac{\mathbf{E}(f_i(x,\omega) + \alpha_i)_+}{1 - \eta} - \alpha_i \le 0$$

• LHS is convex in (x, α_i) , so minimum over α_i ,

$$\inf_{\alpha_i > 0} \left(\frac{\mathbf{E}(f_i(x,\omega) + \alpha_i)_+}{1 - \eta} - \alpha_i \right)$$

is convex in x

- this is $\mathbf{CVaR}(f_i(x,\omega);\eta)$ (can show $\alpha_i > 0$ can be dropped)
- so convex approximation replaces $\mathbf{VaR}(f_i(x,\omega);\eta) \leq 0$ with $\mathbf{CVaR}(f_i(x,\omega);\eta) \leq 0$ which is convex in x

Chebyshev chance constraint bound

• taking $\phi(u) = (u+1)_+^2$ yields Chebyshev bound: for any $\alpha_i > 0$,

$$\operatorname{Prob}(f_i(x,\omega) > 0) \le \operatorname{E}(f_i(x,\omega)/\alpha_i + 1)_+^2$$

• convex approximation constraint

$$\mathbf{E}\,\alpha_i(f_i(x,\omega)/\alpha_i+1)_+^2 \le \alpha_i(1-\eta)$$

can be written as

$$\mathbf{E}(f_i(x,\omega) + \alpha_i)_+^2 / \alpha_i \le \alpha_i(1-\eta)$$

Traditional Chebyshev bound

• dropping subscript + we get more conservative constraint

$$\mathbf{E}\,\alpha_i(f_i(x,\omega)/\alpha_i+1)^2 \le \alpha_i(1-\eta)$$

which we can write as

$$2 \mathbf{E} f_i(x,\omega) + (1/\alpha_i) \mathbf{E} f_i(x,\omega)^2 + \alpha_i \eta \le 0$$

• minimizing over α_i gives $\alpha_i = \left(\mathbf{E} f_i(x,\omega)^2/\eta\right)^{1/2}$; yields constraint

$$\mathbf{E} f_i(x,\omega) + \left(\eta \, \mathbf{E} f_i(x,\omega)^2\right)^{1/2} \le 0$$

which depends only on first and second moments of f_i

Example

- $f_i(x) = a^T x b$, where a is random with $\mathbf{E} a = \bar{a}$, $\mathbf{E} a a^T = \Sigma$
- traditional Chebyshev approximation of chance constraint is

$$\bar{a}^T x - b + \eta^{1/2} \left(x^T \Sigma x - 2b\bar{a}^T x + b^2 \right)^{1/2} \le 0$$

• can write as second-order cone constraint

$$\bar{a}^T x - b + \eta^{1/2} \|(z, y)\|_2 \le 0$$

with $z = \Sigma^{1/2} x - b \Sigma^{-1/2} \overline{a}$, $y = b \left(1 - \overline{a}^T \Sigma^{-1} \overline{a} \right)^{1/2}$

 can interpret as certainty-equivalent constraint, with norm term as 'extra margin'

Chernoff chance constraint bound

• taking $\phi(u) = \exp u$ yields Chernoff bound: for any $\alpha_i > 0$,

$$\operatorname{Prob}(f_i(x,\omega) > 0) \leq \operatorname{E}\exp(f_i(x,\omega)/\alpha_i)$$

convex approximation constraint

$$\mathbf{E} \alpha_i \exp(f_i(x,\omega)/\alpha_i) \le \alpha_i(1-\eta)$$

can be written as

$$\log \mathbf{E} \exp(f_i(x,\omega)/\alpha_i) \le \log(1-\eta)$$

(LHS is cumulant generating function of $f_i(x, \omega)$, evaluated at $1/\alpha_i$)

Example

• maximize a linear revenue function (say) subject to random linear constraints holding with probability η :

maximize $c^T x$ subject to $\operatorname{Prob}(\max(Ax - b) \le 0) \ge \eta$

with variable $x \in \mathbf{R}^n$; $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$ random (Gaussian)

• Markov/CVaR approximation:

maximize $c^T x$ subject to $\mathbf{E}(\max(Ax - b) + \alpha)_+ \le \alpha(1 - \eta)$

with variables $x \in \mathbf{R}^n$, $\alpha \in \mathbf{R}$

• Chebyshev approximation:

maximize
$$c^T x$$

subject to $\mathbf{E}(\max(Ax - b) + \alpha)^2_+ / \alpha \le \alpha(1 - \eta)$

with variables $x \in \mathbf{R}^n$, $\alpha \in \mathbf{R}$

• optimal values of these approximate problems are lower bounds for original problem

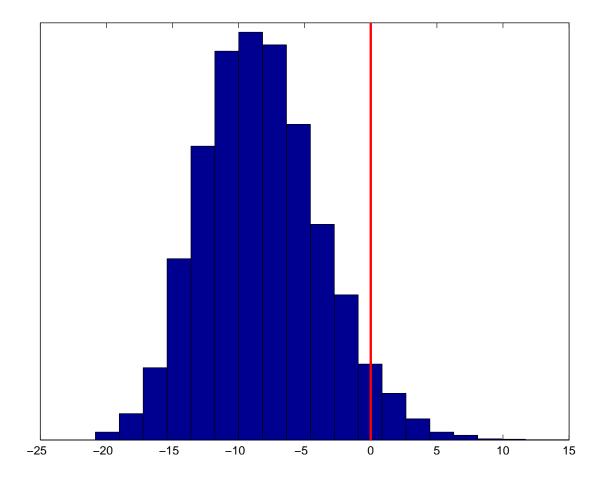
- instance with n = 5, m = 10, $\eta = 0.9$
- solve approximations with sampling method with ${\cal N}=1000$ training samples, validate with ${\cal M}=10000$ samples
- compare to solution of deterministic problem

 $\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & \mathbf{E} \, A x \leq \mathbf{E} \, b \end{array}$

• estimates of $\operatorname{\mathbf{Prob}}(\max(Ax - b) \le 0)$ on training/validation data

	$c^T x$	train	validate
Markov	3.60	0.97	0.96
Chebyshev	3.43	0.97	0.96
deterministic	7.98	0.04	0.03

• PDF of max(Ax - b) for Markov approximation solution



MIT OpenCourseWare http://ocw.mit.edu

6.079 / 6.975 Introduction to Convex Optimization Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.