
Chance constrained optimization


• chance constraints and percentile optimization


• chance constraints for log-concave distributions


• convex approximation of chance constraints 

sources: Rockafellar & Uryasev, Nemirovsky & Shapiro 
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Chance constraints and percentile optimization


•	 ‘chance constraints’ (η is ‘confidence level’): 

Prob(fi(x, ω) ≤ 0) ≥ η 

– convex in some cases (later) 
– generally interested in	 η = 0.9, 0.95, 0.99 
– η = 0.999 meaningless (unless you’re sure about the distribution tails) 

• percentile optimization (γ is ‘η-percentile’): 

minimize γ 
subject to Prob(f0(x, ω) ≤ γ) ≥ η 

– convex or quasi-convex in some cases (later) 
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Value-at-risk and conditional value-at-risk


•	 value-at-risk of random variable z, at level η: 

VaR(z; η) = inf{γ | Prob(z ≤ γ) ≥ η} 

–	 chance constraint Prob(fi(x, ω) ≤ 0) ≥ η same as

VaR(fi(x, ω); η) ≤ 0


conditional value-at-risk: • 

CVaR(z; η) = inf (β + 1/(1 − η)E(z − β)+) 
β 

– CVaR(z; η) ≥	 VaR(z; η) (more on this later) 
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CVaR interpretation 

(for continuous distributions) 

in CVaR definition, β⋆ = VaR(z; η):• 

d 
0 = (β + 1/(1 − η)E(z − β)+) = 1 − 1/(1 − η)Prob(z ≥ β)

dβ 

so Prob(z ≥ β⋆) = 1 − η 

• conditional tail expectation (or expected shortfall) 

E(z|z ≥ β ⋆ ) = E(β ⋆ + (z − β ⋆ )|z ≥ β ⋆ ) 

= β ⋆ + E((z − β ⋆ )+)/Prob(z ≥ β ⋆ ) 

= CVaR(z; η) 
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Chance constraints for log-concave distributions 

•	 suppose 

–	 ω has log-concave density p(ω) 
– C = {(x, ω) | f(x, ω) ≤ 0} is convex in (x, ω)


then 
�


• 
Prob(f(x, ω) ≤ 0) = 1((x, ω) ∈ C)p(ω) dω 

is log-concave, since integrand is 

•	 so chance constraint Prob(f(x, ω) ≤ 0) ≥ η can be expressed as 
convex constraint 

log Prob(f(x, ω) ≤ 0) ≥ log η 
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� � 

Linear inequality with normally distributed parameter 

•	 consider aTx ≤ b, with a ∼ N (ā,Σ) 

then aTx − b ∼ N (āTx − b, xTΣx)• 

hence •	
ā x 

Prob(a T x ≤ b) = Φ 
b√−

xTΣ

T

x 

and so • 

Prob(a T x ≤ b) ≥ η ⇐⇒ b − āT x ≥ Φ−1(η)�Σ1/2 x�2


a second-order cone constraint for η ≥ 0.5 (i.e., Φ−1(η) ≥ 0)
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Portfolio optimization example


•	 x ∈ Rn gives portfolio allocation; xi is (fractional) position in asset i 

x must satisfy 1Tx = 1, x ∈ C (convex portfolio constraint set) • 

portfolio return (say, in percent) is pTx, where p ∼ N (p̄, Σ) • 
(a more realistic model is p log-normal) 

•	 maximize expected return subject to limit on probability of loss 
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• problem is	
maximize E pTx 
subject to	 Prob(pTx ≤ 0) ≤ β 

1
Tx = 1, x ∈ C 

• can be expressed as convex problem (provided β ≤ 1/2)


maximize	 p̄Tx 
subject to	 p̄Tx ≥ Φ−1(1 − β)�Σ1/2x�2 

1
Tx = 1, x ∈ C


(an SOCP when C is polyhedron)
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Example


• n = 10 assets, β = 0.05, C = {x | x � −0.1}


• compare 

– optimal portfolio 
– optimal portfolio w/o loss risk constraint 
– uniform portfolio (1/n)1 

portfolio 
optimal 
w/o loss constraint 
uniform 

E pTx 
7.51

10.66

3.41


Prob(pTx ≤ 0) 
5.0%

20.3%

18.9%
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return distributions:


−20 −15 −10 −5 0 5 10 15 20 25 30 

optimal 

w/o loss constraint


−20 −15 −10 −5 0 5 10 15 20 25 30 

uniform


−20 −15 −10 −5 0 5 10 15 20 25
 30
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Convex approximation of chance constraint bound


•	 assume fi(x, ω) is convex in x 

suppose φ : R R is nonnegative convex nondecreasing, with φ(0) = 1•	 →

•	 for any αi > 0, φ(z/αi) ≥ 1(z > 0) for all z, so 

E φ(fi(x, ω)/αi) ≥ Prob(fi(x, ω) > 0) 

•	 hence (convex) constraint 

E φ(fi(x, ω)/αi) ≤ 1 − η


ensures chance constraint Prob(fi(x, ω) ≤ 0) ≥ η holds


•	 this holds for any αi > 0; we now show how to optimize over αi 
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write constraint as • 

E αiφ(fi(x, ω)/αi) ≤ αi(1 − η) 

–	 (perspective function) vφ(u/v) is convex in (u, v) for v > 0,

nondecreasing in u


–	 so composition αiφ(fi(x, ω)/αi) is convex in (x, αi) for αi > 0 
–	 hence constraint above is convex in x and αi 

–	 so we can optimize over x and αi > 0 via convex optimization 

•	 yields a convex stochastic optimization problem that is a conservative 
approximation of the chance-constrained problem 

•	 we’ll look at some special cases 
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Markov chance constraint bound


•	 taking φ(u) = (u + 1)+ gives Markov bound: for any αi > 0, 

Prob(fi(x, ω) > 0) ≤ E(fi(x, ω)/αi + 1)+ 

• convex approximation constraint 

E αi(fi(x, ω)/αi + 1)+ ≤ αi(1 − η) 

can be written as 

E(fi(x, ω) + αi)+ ≤ αi(1 − η) 

• we can optimize over x and αi ≥ 0 
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Interpretation via conditional value-at-risk


•	 write conservative approximation as 

E(fi(x, ω) + αi)+ 

1 − η 
− αi ≤ 0 

•	 LHS is convex in (x, αi), so minimum over αi, 

E(fi(x, ω) + αi)+
inf	 − αi 

αi>0 1 − η


is convex in x


•	 this is CVaR(fi(x, ω); η) (can show αi > 0 can be dropped) 

•	 so convex approximation replaces VaR(fi(x, ω); η) ≤ 0 with 
CVaR(fi(x, ω); η) ≤ 0 which is convex in x 
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Chebyshev chance constraint bound


• taking φ(u) = (u + 1)
2+
 yields Chebyshev bound: for any αi > 0,


Prob(fi(x, ω) > 0) ≤ E(fi(x, ω)/αi + 1)

• convex approximation constraint 

2
+


E αi(fi(x, ω)/αi + 1)
2+
≤ αi(1 − η)


can be written as 

E(fi(x, ω) + αi)
2
+
/αi ≤ αi(1 − η)
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Traditional Chebyshev bound


•	 dropping subscript + we get more conservative constraint 

E αi(fi(x, ω)/αi + 1)2 ≤ αi(1 − η) 

which we can write as 

2E fi(x, ω) + (1/αi)E fi(x, ω)2 + αiη ≤ 0 

• minimizing over αi	 gives αi = 
� 

E fi(x, ω)2/η 
�1/2 

; yields constraint 

E fi(x, ω) + 
� 

η E fi(x, ω)2 
�1/2 ≤ 0


which depends only on first and second moments of fi
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Example


fi(x) = aTx − b, where a is random with E a = ā, E aaT = Σ• 

•	 traditional Chebyshev approximation of chance constraint is 

āT x − b + η1/2 
� 

x TΣx − 2bāT x + b2
�1/2 ≤ 0 

can write as second-order cone constraint • 

āT x − b + η1/2�(z, y)�2 ≤ 0 

with z = Σ1/2x − bΣ−1/2ā, y = b 
� 

1 − āTΣ−1ā
�1/2 

•	 can interpret as certainty-equivalent constraint, with norm term as 
‘extra margin’ 
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Chernoff chance constraint bound


•	 taking φ(u) = expu yields Chernoff bound: for any αi > 0, 

Prob(fi(x, ω) > 0) ≤ E exp(fi(x, ω)/αi) 

• convex approximation constraint 

E αi exp(fi(x, ω)/αi) ≤ αi(1 − η) 

can be written as 

logE exp(fi(x, ω)/αi) ≤ log(1 − η) 

(LHS is cumulant generating function of fi(x, ω), evaluated at 1/αi) 
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Example


•	 maximize a linear revenue function (say) subject to random linear 
constraints holding with probability η: 

maximize cTx 
subject to Prob(max(Ax − b) ≤ 0) ≥ η 

with variable	 x ∈ Rn; A ∈ Rm×n , b ∈ Rm random (Gaussian) 

•	 Markov/CVaR approximation: 

maximize cTx 
subject to E(max(Ax − b) + α)+ ≤ α(1 − η)


with variables x ∈ Rn , α ∈ R
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•	 Chebyshev approximation: 

maximize cTx

subject to E(max(Ax − b) + α)2 /α ≤ α(1 − η)
+

with variables x ∈ Rn , α ∈ R 

•	 optimal values of these approximate problems are lower bounds for 
original problem 
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•	 instance with n = 5, m = 10, η = 0.9 

•	 solve approximations with sampling method with N = 1000 training 
samples, validate with M = 10000 samples 

•	 compare to solution of deterministic problem 

maximize cTx 
subject to E Ax ≤ E b 

•	 estimates of Prob(max(Ax − b) ≤ 0) on training/validation data


Tc x 
Markov 3.60 
Chebyshev 3.43 
deterministic 7.98 

train

0.97

0.97

0.04


validate

0.96

0.96

0.03
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• PDF of max(Ax − b) for Markov approximation solution


−25 −20 −15 −10 −5 0 5 10 15
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