Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 Department of Mechanical Engineering

Problem Set 9 Solutions

Solution to Problem 1: Well, Well, Well

Solution to Problem 1, part a.
Inside the well $\mathrm{V}(\mathrm{x})=0$ and therefore

$$
\begin{equation*}
i \hbar \frac{\partial \psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}} \tag{9-6}
\end{equation*}
$$

Solution to Problem 1, part b.

If E has a nonzero imaginary part $E_{\text {imag }}$, then the magnitude of $f(t)$ is a function of time, in particular

$$
\begin{equation*}
|f(t)|=\exp \left(E_{\text {imag }} t / \hbar\right) \tag{9-7}
\end{equation*}
$$

If $E_{\text {imag }}>0$ then $|f(t)|$ gets large for large values of t (i.e., it blows up at infinity). If $E_{\text {imag }}<0$ then $|f(t)|$ gets large for large values of $-t$ (i.e., it blows up at negative infinity). In either case it is impossible to normalize $\psi(x)$.

Solution to Problem 1, part c.

$$
\begin{equation*}
E \phi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \phi(x, t)}{\partial x^{2}} \tag{9-8}
\end{equation*}
$$

Solution to Problem 1, part d.

Since

$$
\begin{align*}
\phi(x) & =a \sin (k x)+b \cos (k x) \tag{9-9}\\
\frac{d \phi(x)}{d x} & =a k \cos (k x)-b k \sin (k x) \tag{9-10}\\
\frac{d^{2} \phi(x)}{d x^{2}} & =-a k^{2} \sin (k x)-b k^{2} \cos (k x) \\
& =-k^{2} \phi(x) \tag{9-11}
\end{align*}
$$

Therefore

$$
\begin{equation*}
E \phi(x)=\left(\frac{\hbar^{2} k^{2}}{2 m}\right) \phi(x) \tag{9-12}
\end{equation*}
$$

so

$$
\begin{equation*}
E=\frac{\hbar^{2} k^{2}}{2 m} \tag{9-13}
\end{equation*}
$$

Solution to Problem 1, part e.

One of the boundary conditions is $\phi(0)=0$, so

$$
\begin{align*}
0 & =\phi(0) \\
& =a \sin (0)+b \cos (0) \\
& =b \tag{9-14}
\end{align*}
$$

Since we know the wavefunction is nonzero, a must be nonzero as well.

Solution to Problem 1, part f.

$\phi(x)$ must be zero at the boundaries, which implies

$$
\begin{equation*}
\frac{k=j \pi}{L} \tag{9-15}
\end{equation*}
$$

so that $\sin (-k L)=0$.
Solution to Problem 1, part g.

$$
\begin{equation*}
e_{j}=\frac{\hbar^{2} \pi^{2} j^{2}}{2 m L^{2}} \tag{9-16}
\end{equation*}
$$

Solution to Problem 1, part h.

$$
\begin{equation*}
\phi_{j}(x)=a \sin \left(\frac{j \pi x}{L}\right) \tag{9-17}
\end{equation*}
$$

Solution to Problem 1, part i.

$$
\begin{equation*}
e_{1}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} \tag{9-18}
\end{equation*}
$$

Solution to Problem 1, part j.

$$
\begin{equation*}
e_{2}=\frac{2 \hbar^{2} \pi^{2}}{m L^{2}} \tag{9-19}
\end{equation*}
$$

Solution to Problem 1, part k.

$$
\begin{align*}
e_{1} & =\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} \tag{9-20}\\
& =\frac{\left(1.054 \times 10^{-34} \text { Joule-seconds }\right)^{2} \times(3.1416)^{2}}{2 \times\left(9.109 \times 10^{-31} \text { kilograms }\right) \times\left(2 \times 10^{-8} \text { meters }\right)^{2}} \tag{9-21}\\
& =1.506 \times 10^{-22} \text { Joules } \tag{9-22}
\end{align*}
$$

Solution to Problem 1, part 1.

Express this ground-state energy in electron-volts ($1 \mathrm{eV}=1.602 \times 10^{-19}$ Joules).

$$
\begin{align*}
e_{1} & =1.506 \times 10^{-22} \mathrm{Joules} \\
& =9.391 \times 10^{-4} \mathrm{eV} \tag{9-24}
\end{align*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.050J / 2.110J Information and Entropy

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

