
Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Department of Mechanical Engineering

6.050J/2.110J	 Information and Entropy Spring 2003

Problem Set 4 Solutions

Solution to Problem 1: Meet the Box People

Solution to Problem 1, part a.

The probability that one of the box people’s offspring has different phenotypes is as follows:

i. An offspring has a circular phenotype unless s/he has genes cc. The probability of having cc is equal
to the probability that each parent transmits gene c, squared (because they are independent events).
Thus, this probability is 0.72 = 0.49 This means that the probability that the offspring has a circular
shape is 1 0.49 = 0.51.

ii. An offspring has a square phenotype when it inherits the recessive gene from both parents.	 Inheriting
a recessive gene from one parent occurs with a probability of 0.7, thus the probability of inheriting a
recessive gene from both parents is 0.72 = 0.49, as before.

iii.	 Using the same reasoning, we get that the probability of a blue phenotype is 0.25.

iv. Similarly, the probability of a red phenotype is 0.75.

Solution to Problem 1, part b.

Given that an offspring is circular, the probability of other phenotypes are as follows:

i. Because the genes are independent, the probability of having a blue phenotype given a circular shape
is equal to the probability of having a blue phenotype (gene rr), which is 0.25.

ii. Similarly, the probability of having a red phenotype given a circular shape is 0.75.

Solution to Problem 1, part c.

Given that an offspring is red, the probability of other phenotypes are as follows:

i. Again, the genes are independent, thus the probability of a box shape given a red color is 0.49.

ii. The probability of a circular shape given a red color is 1 0.49 = 0.51.

Solution to Problem 1, part d.

We can draw a table of events as shown in Table 4–2.
We see that the probability that a person has the disease given that the test is positive, is:

0.001 × 0.95
0.001 × 0.95 + 0.999 × 0.004

= 19.2% (4–2)

1

� � � �

2 Problem Set 4 Solutions

Have Disease? Percent Test Results Percent Total
Yes 0.001 Positive 0.95 0.00095

Negative 0.05 0.00005
No 0.999 Positive 0.004 0.003996

Negative 0.996 0.95504

Table 4–2: Triangularity Test Results

Solution to Problem 2: Huffman Coding

Solution to Problem 2, part a.

To encode fourteen symbols we would need four bits, for 24 = 16 different codewords. This gives 4 × 44 = 176
bits.

Solution to Problem 2, part b.

Table 4–3 lists the calculation of the average information per symbol. Here we calculate an average of 3.33
bits per symbol, or 147 bits.

1 1Character Frequency log2 pi
pi log2 pi

p 20.46% 2.29 0.46
e 18.18% 2.45 0.44

space 15.91% 2.65 0.42
c 6.82% 3.87 0.26
i 6.82% 3.87 0.26
k 6.82% 3.87 0.26
r 6.82% 3.87 0.26
d 4.55% 4.45 0.20
a 2.27% 5.46 0.12
f 2.27% 5.46 0.12
l 2.27% 5.46 0.12
o 2.27% 5.46 0.12
s 2.27% 5.46 0.12
t 2.27% 5.46 0.12

Total 100.00 3.33

Table 4–3: Frequency distribution of characters in “peter piper picked a peck of pickled peppers”

Solution to Problem 2, part c.

See Table 4–3.

Solution to Problem 2, part d.

A possible code is derived below and listed in Table 4–4.
Start: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’

p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘NA’ p = .0455) (a=‘NA’ p = .0227) (f=‘NA’
p = .0227) (l=‘NA’ p = .0227) (o=‘NA’ p = .0227) (s=‘NA’ p = .0227) (t=‘NA’ p = .0227)

3 Problem Set 4 Solutions

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘NA’ p = .0455) (a=‘NA’ p = .0227) (f=‘NA’
p = .0227) (l=‘NA’ p = .0227) (o=‘NA’ p = .0227) (s=‘0’, t=‘1’ p = .0454)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘NA’ p = .0455) (a=‘NA’ p = .0227) (f=‘NA’
p = .0227) (l=‘0’, o=‘1’ p = .0454) (s=‘0’, t=‘1’ p = .0454)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘NA’ p = .0455) (a=‘0’, f=‘1’ p = .0454) (l=‘0’,
o=‘1’ p = .0454) (s=‘0’, t=‘1’ p = .0454)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘NA’ p = .0455) (a=‘0’, f=‘1’ p = .0454) (l=‘00’,
o=‘01’, s=‘10’, t=‘11’ p = .0908)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘NA’ p = .0682) (r=‘NA’ p = .0682) (d=‘0’, a=‘10’, f=‘11’ p = .0909) (l=‘00’, o=‘01’, s=‘10’,
t=‘11’ p = .0908)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘NA’ p = .0682) (i=‘NA’
p = .0682) (k=‘0’,r=‘1’ p = .1364) (d=‘0’, a=‘10’, f=‘11’ p = .0909) (l=‘00’, o=‘01’, s=‘10’, t=‘11’ p = .0908)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘0’, i=‘1’ p = .1364)
(k=‘0’, r=‘1’ p = .1364) (d=‘0’, a=‘10’, f=‘11’ p = .0909) (l=‘00’, o=‘01’, s=‘10’, t=‘11’ p = .0908)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘0’, i=‘1’ p = .1364)
(k=‘0’, r=‘1’ p = .1364) (d=‘00’, a=‘010’, f=‘011’, l=‘100’, o=‘101’, s=‘110’, t=‘111’ p = .1817)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (space=‘NA’ p = 0.1591) (c=‘00’, i=‘01’, k=‘10’, r=‘11’
p = .2728) (d=‘00’, a=‘010’, f=‘011’, l=‘100’, o=‘101’, s=‘110’, t=‘111’ p = .1817)

Next: (p=‘NA’ p = 0.2046) (e=‘NA’ p = 0.1818) (c=‘00’, i=‘01’, k=‘10’, r=‘11’ p = .2728) (space=‘0’,
d=‘100’, a=‘1010’, f=‘1011’, l=‘1100’, o=‘1101’, s=‘1110’, t=‘1111’ p = .3408)

Next: (p=‘0’, e=‘1’ p = 0.3864) (c=‘00’, i=‘01’, k=‘10’, r=‘11’ p = .2728) (space=‘0’, d=‘100’, a=‘1010’,
f=‘1011’, l=‘1100’, o=‘1101’, s=‘1110’, t=‘1111’ p = .3408)

Next: (p=‘0’, e=‘1’ p = 0.3864) (c=‘000’, i=‘001’, k=‘010’, r=‘011’, space=‘10’, d=‘1100’, a=‘11010’,
f=‘11011’, l=‘11100’, o=‘11101’, s=‘11110’, t=‘11111’ p = .6136)

Final: (p=‘00’, e=‘01’, c=‘1000’, i=‘1001’, k=‘1010’, r=‘1011’, space=‘110’, d=‘11100’, a=‘111010’,
f=‘111011’, l=‘111100’, o=‘111101’, s=‘111110’, t=‘111111’ p = 1.0000)

Solution to Problem 2, part e.

When the sequence is encoded using the codebook derived in part d. . .

i. See Table 4–5.

ii. The fixed length code requires 176 bits, whereas Huffman coding requires 149 bits. So we find that the
Huffman code does a better job than the fixed length code.

4 Problem Set 4 Solutions

Character Code
p

e

space
 110
1000
1001
1010
1011
11100
111010
111011
111100
111101
111110
111111

c

i

k

r

d

a

f

l

o

s

t

00
01

Table 4–4: Huffman code for “peter piper picked a peck of pickled peppers”

Character # of Characters Bits per Character Bits Needed
p
 9 2 18

16
21
12
12
12
12
10
6
6
6
6
6
6

e
 8 2
space
 7 3

c
 3 4
i
 3 4
k
 3 4
r
 3 4
d
 2 5
a
 1 6
f
 1 6
l
 1 6
o
 1 6
s
 1 6
t
 1 6

Total 44	 149

Table 4–5: Huffman code for “peter piper picked a peck of pickled peppers”

iii.	 This number compares extremely well with the information content of 147 bits for the message as a
whole.

Solution to Problem 2, part f.

The original message is 44 bytes long, and with LZW we know from Problem Set 2 we can encode the

message using LZW in 32 bytes, with 31 characters in the dictionary. Thus we need 32+14=46 different

dictionary entries, for a total of six bits per byte. Thus we can compact the message down to 32 × 6 = 192

characters. Straight encoding needs 176 bits, and Huffman encoding needs 149 bits. Thus Huffman encoding

does the best job of compacting the material.

A lower bound on sending the Huffman codebook is the number of bits in the code, total. This is equal
to 2 + 2 + 3 + 4 + 4 + 4 + 4 + 5 + 6 + 6 + 6 + 6 + 6 + 6 = 64 bits. If we imagine that we need to send some
control bits along, perhaps it is something like five bits between each code (a reasonable estimate), this is
an additional 5 × (14 + 1) = 75 bits. So we have an lowerbound estimate of 139 bits.

5 Problem Set 4 Solutions

Thus a fixedlength code requires 176 bits, LZW needs 192 bits, and Huffman coding with the transmission
of the codebook requires an estimated 296 bits.

MIT OpenCourseWare
http://ocw.mit.edu

6.050J / 2.110J Information and Entropy
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

