Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
Department of Mechanical Engineering
$6.050 \mathrm{~J} / 2.110 \mathrm{~J}$
Information and Entropy
Spring 2003

Problem Set 4 Solutions

Solution to Problem 1: Meet the Box People

Solution to Problem 1, part a.

The probability that one of the box people's offspring has different phenotypes is as follows:
i. An offspring has a circular phenotype unless $s / h e$ has genes cc. The probability of having cc is equal to the probability that each parent transmits gene c, squared (because they are independent events). Thus, this probability is $0.7^{2}=0.49$ This means that the probability that the offspring has a circular shape is $1-0.49=0.51$.
ii. An offspring has a square phenotype when it inherits the recessive gene from both parents. Inheriting a recessive gene from one parent occurs with a probability of 0.7 , thus the probability of inheriting a recessive gene from both parents is $0.7^{2}=0.49$, as before.
iii. Using the same reasoning, we get that the probability of a blue phenotype is 0.25 .
iv. Similarly, the probability of a red phenotype is 0.75 .

Solution to Problem 1, part b.

Given that an offspring is circular, the probability of other phenotypes are as follows:
i. Because the genes are independent, the probability of having a blue phenotype given a circular shape is equal to the probability of having a blue phenotype (gene rr), which is 0.25 .
ii. Similarly, the probability of having a red phenotype given a circular shape is 0.75 .

Solution to Problem 1, part c.

Given that an offspring is red, the probability of other phenotypes are as follows:
i. Again, the genes are independent, thus the probability of a box shape given a red color is 0.49.
ii. The probability of a circular shape given a red color is $1-0.49=0.51$.

Solution to Problem 1, part d.

We can draw a table of events as shown in Table 4-2.
We see that the probability that a person has the disease given that the test is positive, is:

$$
\begin{equation*}
\frac{0.001 \times 0.95}{0.001 \times 0.95+0.999 \times 0.004}=19.2 \% \tag{4-2}
\end{equation*}
$$

Have Disease?	Percent	Test Results	Percent	Total
Yes	0.001	Positive	0.95	0.00095
		Negative	0.05	0.00005
No	0.999	Positive	0.004	0.003996
		Negative	0.996	0.95504

Table 4-2: Triangularity Test Results

Solution to Problem 2: Huffman Coding

Solution to Problem 2, part a.

To encode fourteen symbols we would need four bits, for $2^{4}=16$ different codewords. This gives $4 \times 44=176$ bits.

Solution to Problem 2, part b.

Table 4-3 lists the calculation of the average information per symbol. Here we calculate an average of 3.33 bits per symbol, or 147 bits.

Character	Frequency	$\log _{2}\left(\frac{1}{p_{i}}\right)$	$p_{i} \log _{2}\left(\frac{1}{p_{i}}\right)$
p	20.46%	2.29	0.46
e	18.18%	2.45	0.44
space	15.91%	2.65	0.42
c	6.82%	3.87	0.26
i	6.82%	3.87	0.26
k	6.82%	3.87	0.26
r	6.82%	3.87	0.26
d	4.55%	4.45	0.20
a	2.27%	5.46	0.12
f	2.27%	5.46	0.12
l	2.27%	5.46	0.12
o	2.27%	5.46	0.12
s	2.27%	5.46	0.12
t	2.27%	5.46	0.12
Total	100.00		3.33

Table 4-3: Frequency distribution of characters in "peter piper picked a peck of pickled peppers"

Solution to Problem 2, part c.

See Table 4-3.

Solution to Problem 2, part d.

A possible code is derived below and listed in Table 4-4.
Start: ($\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046$) ($\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818$) ($\mathrm{space}={ }^{\prime} \mathrm{NA}^{\prime} p=0.1591$) ($\left.\mathrm{c}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{i}={ }^{\prime} \mathrm{NA}^{\prime}\right.$
$p=.0682)\left(\mathrm{k}={ }^{‘} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{r}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{d}={ }^{\prime} \mathrm{NA}^{\prime} p=.0455\right)\left(\mathrm{a}={ }^{\prime} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{f}={ }^{\prime} \mathrm{NA}^{\prime}\right.$
$p=.0227)\left(\mathrm{l}={ }^{`} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{o}={ }^{`} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{s}={ }^{`} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{t}={ }^{`} \mathrm{NA}^{\prime} p=.0227\right)$
 $p=.0682)\left(\mathrm{k}={ }^{`} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{r}={ }^{`} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{d}={ }^{`} \mathrm{NA}^{\prime} p=.0455\right)\left(\mathrm{a}={ }^{`} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{f}={ }^{\prime} \mathrm{NA} \mathrm{NA}^{\prime}\right.$ $p=.0227)\left(\mathrm{l}={ }^{\prime} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{o}={ }^{\prime} \mathrm{NA}^{\prime} p=.0227\right)\left(\mathrm{s}={ }^{\prime} 0^{\prime}, \mathrm{t}={ }^{\prime} 1^{\prime} p=.0454\right)$

Next: ($\mathrm{p}={ }^{`} \mathrm{NA}{ }^{\prime} p=0.2046$) ($\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818$) ($\mathrm{space}={ }^{`} \mathrm{NA}^{\prime} p=0.1591$) ($\left.\mathrm{c}={ }^{`} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{i}={ }^{`} \mathrm{NA}^{\prime}\right.$ $p=.0682)\left(\mathrm{k}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{r}={ }^{\prime} \mathrm{NA}{ }^{\prime} p=.0682\right)\left(\mathrm{d}={ }^{\prime} \mathrm{NA}^{\prime} p=.0455\right)\left(\mathrm{a}={ }^{\prime} \mathrm{NA}{ }^{\prime} p=.0227\right)\left(\mathrm{f}={ }^{\prime} \mathrm{NA}^{\prime}\right.$ $p=.0227)\left(\mathrm{l}^{\prime}^{\prime}, \mathrm{o}={ }^{\prime} 1^{\prime} p=.0454\right)\left(\mathrm{s}={ }^{`} 0^{\prime}, \mathrm{t}={ }^{\prime} 1^{\prime} p=.0454\right)$
 $p=.0682)\left(\mathrm{k}={ }^{`} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{r}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{d}={ }^{\prime} \mathrm{NA}^{\prime} p=.0455\right)\left(\mathrm{a}={ }^{\prime} 0\right.$ ', $\left.\mathrm{f}={ }^{\prime} 1^{\prime} p=.0454\right)\left(\mathrm{l}={ }^{\prime} 0^{\prime}\right.$, $\mathrm{o}={ }^{\prime} 1$ ' $\left.p=.0454\right)\left(\mathrm{s}={ }^{\prime} 0\right.$ ', $\left.\mathrm{t}={ }^{\prime} 1^{\prime} p=.0454\right)$

Next: ($\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046$) ($\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818$) ($\mathrm{space}={ }^{\prime} \mathrm{NA}^{\prime} p=0.1591$) ($\left.\mathrm{c}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{i}={ }^{\prime} \mathrm{NA}^{\prime}\right.$
 $\left.\mathrm{o}={ }^{\prime} 01^{\prime}, \mathrm{s}={ }^{\prime} 10^{\prime}, \mathrm{t}={ }^{\prime} 11^{\prime} p=.0908\right)$

Next: ($\mathrm{p}={ }^{`} \mathrm{NA}{ }^{\prime} p=0.2046$) ($\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818$) ($\mathrm{space}={ }^{`} \mathrm{NA}^{\prime} p=0.1591$) ($\mathrm{c}={ }^{`} \mathrm{NA}^{\prime} p=.0682$) ($\mathrm{i}={ }^{`} \mathrm{NA}^{\prime}$
 $\mathrm{t}={ }^{\prime} 11$ ' $p=.0908$)

Next: ($\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046$) ($\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818$) ($\mathrm{space}={ }^{\prime} \mathrm{NA}^{\prime} p=0.1591$) ($\left.\mathrm{c}={ }^{\prime} \mathrm{NA}^{\prime} p=.0682\right)\left(\mathrm{i}={ }^{\prime} \mathrm{NA}^{\prime}\right.$

Next: $\left(\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046\right)\left(\mathrm{e}={ }^{`} \mathrm{NA} \mathrm{N}^{\prime} p=0.1818\right)\left(\mathrm{space}={ }^{`} \mathrm{NA}^{\prime} p=0.1591\right)\left(\mathrm{c}={ }^{\prime} 0^{\prime}, \mathrm{i}={ }^{\prime} 1^{\prime} p=.1364\right)$

Next: ($\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046$) $\left(\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818\right)\left(\mathrm{space}={ }^{`} \mathrm{NA}^{\prime} p=0.1591\right)\left(\mathrm{c}={ }^{\prime} 0^{\prime}, \mathrm{i}={ }^{\prime} 1\right.$ ' $\left.p=.1364\right)$

Next: $\left(\mathrm{p}={ }^{`} \mathrm{NA}^{\prime} p=0.2046\right)\left(\mathrm{e}={ }^{`} \mathrm{NA}^{\prime} p=0.1818\right)\left(\mathrm{space}={ }^{`} \mathrm{NA}^{\prime} p=0.1591\right)\left(\mathrm{c}={ }^{`} 00^{\prime}, \mathrm{i}={ }^{`} 01^{\prime}, \mathrm{k}={ }^{`} 10^{\prime}, \mathrm{r}={ }^{`} 11{ }^{\prime}\right.$ $p=.2728)\left(\mathrm{d}={ }^{\prime} 00^{\prime}, \mathrm{a}={ }^{`} 010^{\prime}, \mathrm{f}={ }^{‘} 011^{\prime}, \mathrm{l}={ }^{‘} 100^{\prime}, \mathrm{o}={ }^{\prime} 101^{\prime}, \mathrm{s}={ }^{\prime} 110^{\prime}, \mathrm{t}={ }^{\prime} 111^{\prime} p=.1817\right)$
 $\mathrm{d}={ }^{\prime} 100^{\prime}, \mathrm{a}={ }^{\prime} 1010^{\prime}, \mathrm{f}={ }^{\prime} 1011$, $\mathrm{l}={ }^{\prime} 1100^{\prime}, \mathrm{o}={ }^{\prime} 1101^{\prime}, \mathrm{s}={ }^{\prime} 1110^{\prime}, \mathrm{t}={ }^{\prime} 11111^{\prime} p=.3408$)
 $\mathrm{f}={ }^{\prime} 1011$ ', $\mathrm{l}={ }^{\prime} 1100^{\prime}, \mathrm{o}={ }^{‘} 1101^{\prime}, \mathrm{s}={ }^{`} 1110^{\prime}, \mathrm{t}={ }^{`} 1111^{\prime} p=.3408$)
 $\mathrm{f}={ }^{\prime} 11011$ ', $\left.\mathrm{l}={ }^{\prime} 11100^{\prime}, \mathrm{o}={ }^{\prime} 11101^{\prime}, \mathrm{s}={ }^{\prime} 11110^{\prime}, \mathrm{t}={ }^{\prime} 11111^{\prime} p=.6136\right)$
 $\mathrm{f}={ }^{\prime} 111011$ ', $\left.\mathrm{l}={ }^{\prime} 111100^{\prime}, \mathrm{o}={ }^{‘} 111101^{\prime}, \mathrm{s}={ }^{\prime} 111110^{\prime}, \mathrm{t}={ }^{\prime} 111111{ }^{\prime} p=1.0000\right)$

Solution to Problem 2, part e.

When the sequence is encoded using the codebook derived in part d...
i. See Table $4-5$.
ii. The fixed length code requires 176 bits, whereas Huffman coding requires 149 bits. So we find that the Huffman code does a better job than the fixed length code.

Character	Code
p	00
e	01
space	110
c	1000
i	1001
k	1010
r	1011
d	11100
a	111010
f	111011
l	111100
o	111101
s	111110
t	111111

Table 4-4: Huffman code for "peter piper picked a peck of pickled peppers"

Character	\# of Characters	Bits per Character	Bits Needed
p	9	2	18
e	8	2	16
space	7	3	21
c	3	4	12
i	3	4	12
k	3	4	12
r	3	4	12
d	2	5	10
a	1	6	6
f	1	6	6
l	1	6	6
o	1	6	6
s	1	6	6
t	1	6	6
Total	44		149

Table 4-5: Huffman code for "peter piper picked a peck of pickled peppers"
iii. This number compares extremely well with the information content of 147 bits for the message as a whole.

Solution to Problem 2, part f.

The original message is 44 bytes long, and with LZW we know from Problem Set 2 we can encode the message using LZW in 32 bytes, with 31 characters in the dictionary. Thus we need $32+14=46$ different dictionary entries, for a total of six bits per byte. Thus we can compact the message down to $32 \times 6=192$ characters. Straight encoding needs 176 bits, and Huffman encoding needs 149 bits. Thus Huffman encoding does the best job of compacting the material.

A lower bound on sending the Huffman codebook is the number of bits in the code, total. This is equal to $2+2+3+4+4+4+4+5+6+6+6+6+6+6=64$ bits. If we imagine that we need to send some control bits along, perhaps it is something like five bits between each code (a reasonable estimate), this is an additional $5 \times(14+1)=75$ bits. So we have an lower-bound estimate of 139 bits.

Thus a fixed-length code requires 176 bits, LZW needs 192 bits, and Huffman coding with the transmission of the codebook requires an estimated 296 bits.

MIT OpenCourseWare
http://ocw.mit.edu

6.050J / 2.110J Information and Entropy

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

