
Chapter 7 

Processes 

The model of a communication system that we have been developing is shown in Figure 7.1. This model 
is also useful for some computation systems. The source is assumed to emit a stream of symbols. The 
channel may be a physical channel between different points in space, or it may be a memory which stores 
information for retrieval at a later time, or it may be a computation in which the information is processed 
in some way. 
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Figure 7.1: Communication system 

Figure 7.1 shows the module inputs and outputs and how they are connected. A diagram like this is 
very useful in portraying an overview of the operation of a system, but other representations are also useful. 
In this chapter we develop two abstract models that are general enough to represent each of these boxes in 
Figure 7.1, but show the flow of information quantitatively. 

Because each of these boxes in Figure 7.1 processes information in some way, it is called a processor 
and what it does is called a process. The processes we consider here are 

•	 Discrete: The inputs are members of a set of mutually exclusive possibilities, only one of which occurs 
at a time, and the output is one of another discrete set of mutually exclusive events. 

•	 Finite: The set of possible inputs is finite in number, as is the set of possible outputs. 

•	 Memoryless: The process acts on the input at some time and produces an output based on that 
input, ignoring any prior inputs. 
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82 7.1 Types of Process Diagrams 

•	 Nondeterministic: The process may produce a different output when presented with the same input 
a second time (the model is also valid for deterministic processes). Because the process is nondeter
ministic the output may contain random noise. 

•	 Lossy: It may not be possible to “see” the input from the output, i.e., determine the input by observing 
the output. Such processes are called lossy because knowledge about the input is lost when the output 
is created (the model is also valid for lossless processes). 

7.1 Types of Process Diagrams 

Different diagrams of processes are useful for different purposes. The four we use here are all recursive, 
meaning that a process may be represented in terms of other, more detailed processes of the same sort, inter
connected. Conversely, two or more connected processes may be represented by a single higher-level process 
with some of the detailed information suppressed. The processes represented can be either deterministic 
(noiseless) or nondeterministic (noisy), and either lossless or lossy. 

•	 Block Diagram: Figure 7.1 (previous page) is a block diagram. It shows how the processes are 
connected, but very little about how the processes achieve their purposes, or how the connections are 
made. It is useful for viewing the system at a highly abstract level. An interconnection in a block 
diagram can represent many bits. 

•	 Circuit Diagram: If the system is made of logic gates, a useful diagram is one showing such gates 
interconnected. For example, Figure 7.2 is an AND gate. Each input and output represents a wire 
with a single logic value, with, for example, a high voltage representing 1 and a low voltage 0. The 
number of possible bit patterns of a logic gate is greater than the number of physical wires; each wire 
could have two possible voltages, so for n-input gates there would be 2n possible input states. Often, 
but not always, the components in logic circuits are deterministic. 

•	 Probability Diagram: A process with n single-bit inputs and m single-bit outputs can be modeled 
by the probabilities relating the 2n possible input bit patterns and the 2m possible output patterns. For 
example, Figure 7.3 (next page) shows a gate with two inputs (four bit patterns) and one output. An 
example of such a gate is the AND gate, and its probability model is shown in Figure 7.4. Probability 
diagrams are discussed further in Section 7.2. 

•	 Information Diagram: A diagram that shows explicitly the information flow between processes is 
useful. In order to handle processes with noise or loss, the information associated with them can be 
shown. Information diagrams are discussed further in Section 7.6. 

Figure 7.2: Circuit diagram of an AND gate 

7.2 Probability Diagrams 

The probability model of a process with n inputs and m outputs, where n and m are integers, is shown 
in Figure 7.5. The n input states are mutually exclusive, as are the m output states. If this process is 
implemented by logic gates the input would need at least log2(n) but not as many as n wires. 
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Figure 7.3: Probability model of a two-input one-output gate. 
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Figure 7.4: Probability model of an AND gate 

This model for processes is conceptually simple and general. It works well for processes with a small 
number of bits. It was used for the binary channel in Chapter 6. 

Unfortunately, the probability model is awkward when the number of input bits is moderate or large. 
The reason is that the inputs and outputs are represented in terms of mutually exclusive sets of events. If 
the events describe signals on, say, five wires, each of which can carry a high or low voltage signifying a 
boolean 1 or 0, there would be 32 possible events. It is much easier to draw a logic gate, with five inputs 
representing physical variables, than a probability process with 32 input states. This “exponential explosion” 
of the number of possible input states gets even more severe when the process represents the evolution of 
the state of a physical system with a large number of atoms. For example, the number of molecules in a 
mole of gas is Avogadro’s number NA = 6.02 × 1023 . If each atom had just one associated boolean variable, 
there would be 2NA states, far greater than the number of particles in the universe. And there would not be 
time to even list all the particles, much less do any calculations: the number of microseconds since the big 
bang is less than 5 × 1023 . Despite this limitation, the probability diagram model is useful conceptually. 

Let’s review the fundamental ideas in communications, introduced in Chapter 6, in the context of such 
diagrams. 

We assume that each possible input state of a process can lead to one or more output state. For each 

n inputs ..
. 

..
. m outputs 

Figure 7.5: Probability model 
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84 7.2 Probability Diagrams 

input i denote the probability that this input leads to the output j as cji. These transition probabilities 
cji can be thought of as a table, or matrix, with as many columns as there are input states, and as many 
rows as output states. We will use i as an index over the input states and j over the output states, and 
denote the event associated with the selection of input i as Ai and the event associated with output j as Bj . 

The transition probabilities are properties of the process, and do not depend on the inputs to the process. 
The transition probabilities lie between 0 and 1, and for each i their sum over the output index j is 1, since 
for each possible input event exactly one output event happens. If the number of input states is the same 
as the number of output states then cji is a square matrix; otherwise it has more columns than rows or vice 
versa. 

0 ≤ cji ≤ 1 (7.1) 

1 = cji (7.2) 
j 

This description has great generality. It applies to a deterministic process (although it may not be the 
most convenient—a truth table giving the output for each of the inputs is usually simpler to think about). 
For such a process, each column of the cji matrix contains one element that is 1 and all the other elements 
are 0. It also applies to a nondeterministic channel (i.e., one with noise). It applies to the source encoder 
and decoder, to the compressor and expander, and to the channel encoder and decoder. It applies to logic 
gates and to devices which perform arbitrary memoryless computation (sometimes called “combinational 
logic” in distinction to “sequential logic” which can involve prior states). It even applies to transitions taken 
by a physical system from one of its states to the next. It applies if the number of output states is greater 
than the number of input states (for example channel encoders) or less (for example channel decoders). 

If a process input is determined by random events Ai with probability distribution p(Ai) then the various 
other probabilities can be calculated. The conditional output probabilities, conditioned on the input, are 

p(Bj | Ai) = cji (7.3) 

The unconditional probability of each output p(Bj ) is 

p(Bj ) = cjip(Ai) (7.4) 
i 

Finally, the joint probability of each input with each output p(Ai, Bj ) and the backward conditional proba
bilities p(Ai | Bj ) can be found using Bayes’ Theorem: 

p(Ai, Bj ) = p(Bj )p(Ai | Bj ) (7.5) 
= p(Ai)p(Bj | Ai) (7.6) 
= p(Ai)cji (7.7) 

7.2.1 Example: AND Gate 

The AND gate is deterministic (it has no noise) but is lossy, because knowledge of the output is not 
generally sufficient to infer the input. The transition matrix is 

c0(00) c0(01) c0(10) c0(11) = 
1 1 1 0 

(7.8)
c1(00) c1(01) c1(10) c1(11) 0 0 0 1 

The probability model for this gate is shown in Figure 7.4. 
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(1) � � j=0 i=0 � 1 − ε � � j=0i=0 � 

ε � �

ε � �
� j=1 i=1 � � j=1i=1 � 

(1) 1 − ε 

(a) No errors (b) Symmetric errors 

Figure 7.6: Probability models for error-free binary channel and symmetric binary channel 

7.2.2 Example: Binary Channel 

The binary channel is well described by the probability model. Its properties, many of which were 
discussed in Chapter 6, are summarized below. 

Consider first a noiseless binary channel which, when presented with one of two possible input values 0 
or 1, transmits this value faithfully to its output. This is a very simple example of a discrete memoryless 
process. We represent this channel by a probability model with two inputs and two outputs. To indicate 
the fact that the input is replicated faithfully at the output, the inner workings of the box are revealed, in 
Figure 7.6(a), in the form of two paths, one from each input to the corresponding output, and each labeled 
by the probability (1). The transition matrix for this channel is 

c00 c01 = 
1 0 

(7.9)
c10 c11 0 1 

The input information I for this process is 1 bit if the two values are equally likely, or if p(A0) =� p(A1) the 
input information is 

1 1 
I = p(A0) log2 + p(A1) log2 (7.10) 

p(A0) p(A1) 

The output information J has a similar formula, using the output probabilities p(B0) and p(B1). Since the 
input and output are the same in this case, it is always possible to infer the input when the output has been 
observed. The amount of information out J is the same as the amount in I: J = I. This noiseless channel 
is effective for its intended purpose, which is to permit the receiver, at the output, to infer the value at the 
input. 

Next, let us suppose that this channel occasionally makes errors. Thus if the input is 1 the output is not 
always 1, but with the “bit error probability” ε is flipped to the “wrong” value 0, and hence is “correct” 
only with probability 1 − ε. Similarly, for the input of 0, the probability of error is ε. Then the transition 
matrix is 

c00 c01 =
1 − ε ε 

(7.11)
c10 c11 ε 1 − ε 

This model, with random behavior, is sometimes called the Symmetric Binary Channel (SBC), symmetric 
in the sense that the errors in the two directions (from 0 to 1 and vice versa) are equally likely. The probability 
diagram for this channel is shown in Figure 7.6(b), with two paths leaving from each input, and two paths 
converging on each output. 

Clearly the errors in the SBC introduce some uncertainty into the output over and above the uncertainty 
that is present in the input signal. Intuitively, we can say that noise has been added, so that the output is 
composed in part of desired signal and in part of noise. Or we can say that some of our information is lost 
in the channel. Both of these effects have happened, but as we will see they are not always related; it is 
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possible for processes to introduce noise but have no loss, or vice versa. In Section 7.3 we will calculate the 
amount of information lost or gained because of noise or loss, in bits. 

Loss of information happens because it is no longer possible to tell with certainty what the input signal 
is, when the output is observed. Loss shows up in drawings like Figure 7.6(b) where two or more paths 
converge on the same output. Noise happens because the output is not determined precisely by the input. 
Noise shows up in drawings like Figure 7.6(b) where two or more paths diverge from the same input. Despite 
noise and loss, however, some information can be transmitted from the input to the output (i.e., observation 
of the output can allow one to make some inferences about the input). 

We now return to our model of a general discrete memoryless nondeterministic lossy process, and derive 
formulas for noise, loss, and information transfer (which will be called “mutual information”). We will then 
come back to the symmetric binary channel and interpret these formulas. 

7.3 Information, Loss, and Noise 

For the general discrete memoryless process, useful measures of the amount of information presented 
at the input and the amount transmitted to the output can be defined. We suppose the process state is 
represented by random events Ai with probability distribution p(Ai). The information at the input I is 
the same as the entropy of this source. (We have chosen to use the letter I for input information not 
because it stands for “input” or “information” but rather for the index i that goes over the input probability 
distribution. The output information will be denoted J for a similar reason.) � � 

1 
� 

I = p(Ai) log2 (7.12) 
p(Ai)i 

This is the amount of uncertainty we have about the input if we do not know what it is, or before it has 
been selected by the source. 

A similar formula applies at the output. The output information J can also be expressed in terms of the 
input probability distribution and the channel transition matrix: 

� 1 
J = p(Bj ) log2 p(Bj )j � � 1 

= cjip(Ai) log2 � (7.13) 
i cjip(Ai)j i 

Note that this measure of information at the output J refers to the identity of the output state, not 
the input state. It represents our uncertainty about the output state before we discover what it is. If our 
objective is to determine the input, J is not what we want. Instead, we should ask about the uncertainty 
of our knowledge of the input state. This can be expressed from the vantage point of the output by asking 
about the uncertainty of the input state given one particular output state, and then averaging over those 
states. This uncertainty, for each j, is given by a formula like those above but using the reverse conditional 
probabilities p(Ai | Bj ) � 1 

i 

p(Ai | Bj ) log2 p(Ai | Bj ) 
(7.14) 

Then your average uncertainty about the input after learning the output is found by computing the average 
over the output probability distribution, i.e., by multiplying by p(Bj ) and summing over j 
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� � � 
1 

� 

L = p(Bj ) p(Ai | Bj ) log2 p(Ai Bj )j i 
| � � 

1 
� 

= p(Ai, Bj ) log2 (7.15) 
ij 

p(Ai | Bj ) 

Note that the second formula uses the joint probability distribution p(Ai, Bj ). We have denoted this 
average uncertainty by L and will call it “loss.” This term is appropriate because it is the amount of 
information about the input that is not able to be determined by examining the output state; in this sense it 
got “lost” in the transition from input to output. In the special case that the process allows the input state 
to be identified uniquely for each possible output state, the process is “lossless” and, as you would expect, 
L = 0. 

It was proved in Chapter 6 that L ≤ I or, in words, that the uncertainty after learning the output is less 
than (or perhaps equal to) the uncertainty before. This result was proved using the Gibbs inequality. 

The amount of information we learn about the input state upon being told the output state is our 
uncertainty before being told, which is I, less our uncertainty after being told, which is L. We have just 
shown that this amount cannot be negative, since L ≤ I. As was done in Chapter 6, we denote the amount 
we have learned as M = I − L, and call this the “mutual information” between input and output. This is 
an important quantity because it is the amount of information that gets through the process. 

To recapitulate the relations among these information quantities: � � 
1 
� 

I = p(Ai) log2 (7.16) 
p(Ai)i � � � 

1 
� 

L = p(Bj ) p(Ai | Bj ) log2 p(Ai Bj ) 
(7.17) 

j i 
| 

M = I − L (7.18) 

0 ≤ M ≤ I (7.19) 

0 ≤ L ≤ I (7.20) 

Processes with outputs that can be produced by more than one input have loss. These processes may 
also be nondeterministic, in the sense that one input state can lead to more than one output state. The 
symmetric binary channel with loss is an example of a process that has loss and is also nondeterministic. 
However, there are some processes that have loss but are deterministic. An example is the AND logic gate, 
which has four mutually exclusive inputs 00 01 10 11 and two outputs 0 and 1. Three of the four inputs lead 
to the output 0. This gate has loss but is perfectly deterministic because each input state leads to exactly 
one output state. The fact that there is loss means that the AND gate is not reversible. 

There is a quantity similar to L that characterizes a nondeterministic process, whether or not it has loss. 
The output of a nondeterministic process contains variations that cannot be predicted from knowing the 
input, that behave like noise in audio systems. We will define the noise N of a process as the uncertainty in 
the output, given the input state, averaged over all input states. It is very similar to the definition of loss, 
but with the roles of input and output reversed. Thus 

� � � 
1 

� 

N = p(Ai) p(Bj | Ai) log2 p(Bj Ai)i j 
| � � � 

1 
� 

= p(Ai) cji log2 (7.21) 
cji i j 
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Steps similar to those above for loss show analogous results. What may not be obvious, but can be proven 
easily, is that the mutual information M plays exactly the same sort of role for noise as it does for loss. 
The formulas relating noise to other information measures are like those for loss above, where the mutual 
information M is the same: � � 

1 
� 

J = p(Bj ) log2 (7.22) 
p(Bj )i � � � 

1 
� 

N = p(Ai) cji log2 (7.23) 
cji i j 

M = J − N (7.24) 

0 ≤ M ≤ J (7.25) 

It follows from these results that 

0 ≤ N ≤ J (7.26) 

J − I = N − L (7.27) 

7.3.1 Example: Symmetric Binary Channel 

For the SBC with bit error probability ε, these formulas can be evaluated, even if the two input proba
bilities p(A0) and p(A1) are not equal. If they happen to be equal (each 0.5), then the various information 
measures for the SBC in bits are particularly simple: 

I = 1 bit (7.28) 

J = 1 bit (7.29) 

1 1 
L = N = ε log2 ε 

+ (1 − ε) log2 1 − ε 
(7.30) 

1 1 
M = 1 − ε log2 ε 

− (1 − ε) log2 1 − ε 
(7.31) 

The errors in the channel have destroyed some of the information, in the sense that they have prevented 
an observer at the output from knowing with certainty what the input is. They have thereby permitted only 
the amount of information M = I − L to be passed through the channel to the output. 

7.4 Deterministic Examples 

This probability model applies to any system with mutually exclusive inputs and outputs, whether or not 
the transitions are random. If all the transition probabilities cji are equal to either 0 or 1, then the process 
is deterministic. 

A simple example of a deterministic process is the NOT gate, which implements Boolean negation. If the 
input is 1 the output is 0 and vice versa. The input and output information are the same, I = J and there 
is no noise or loss: N = L = 0. The information that gets through the gate is M = I. See Figure 7.7(a). 

A slightly more complex deterministic process is the exclusive or, XOR gate. This is a Boolean function 
of two input variables and therefore there are four possible input values. When the gate is represented by 
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(a) NOT gate (b) XOR gate 

Figure 7.7: Probability models of deterministic gates 

a circuit diagram, there are two input wires representing the two inputs. When the gate is represented as 
a discrete process using a probability diagram like Figure 7.7(b), there are four mutually exclusive inputs 
and two mutually exclusive outputs. If the probabilities of the four inputs are each 0.25, then I = 2 bits, 
and the two output probabilities are each 0.5 so J = 1 bit. There is therefore 1 bit of loss, and the mutual 
information is 1 bit. The loss arises from the fact that two different inputs produce the same output; for 
example if the output 1 is observed the input could be either 01 or 10. There is no noise introduced into 
the output because each of the transition parameters is either 0 or 1, i.e., there are no inputs with multiple 
transition paths coming from them. 

Other, more complex logic functions can be represented in similar ways. However, for logic functions 
with n physical inputs, a probability diagram is awkward if n is larger than 3 or 4 because the number of 
inputs is 2n . 

7.4.1 Error Correcting Example 

The Hamming Code encoder and decoder can be represented as discrete processes in this form. Consider 
the (3, 1, 3) code, otherwise known as triple redundancy. The encoder has one 1-bit input (2 values) and a 
3-bit output (8 values). The input 1 is wired directly to the output 111 and the input 0 to the output 000. 
The other six outputs are not connected, and therefore occur with probability 0. See Figure 7.8(a). The 
encoder has N = 0, L = 0, and M = I = J . Note that the output information is not three bits even though 
three physical bits are used to represent it, because of the intentional redundancy. 

The output of the triple redundancy encoder is intended to be passed through a channel with the possi
bility of a single bit error in each block of 3 bits. This noisy channel can be modelled as a nondeterministic 
process with 8 inputs and 8 outputs, Figure 7.8(b). Each of the 8 inputs is connected with a (presumably) 
high-probability connection to the corresponding output, and with low probability connections to the three 
other values separated by Hamming distance 1. For example, the input 000 is connected only to the outputs 
000 (with high probability) and 001, 010, and 100 each with low probability. This channel introduces noise 
since there are multiple paths coming from each input. In general, when driven with arbitrary bit patterns, 
there is also loss. However, when driven from the encoder of Figure 7.8(a), the loss is 0 bits because only 
two of the eight bit patterns have nonzero probability. The input information to the noisy channel is 1 bit 
and the output information is greater than 1 bit because of the added noise. This example demonstrates 
that the value of both noise and loss depend on both the physics of the channel and the probabilities of the 
input signal. 

The decoder, used to recover the signal originally put into the encoder, is shown in Figure 7.8(c). The 
transition parameters are straightforward—each input is connected to only one output. The decoder has 
loss (since multiple paths converge on each of the ouputs) but no noise (since each input goes to only one 
output). 
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(a) Encoder (b) Channel (c) Decoder 

Figure 7.8: Triple redundancy error correction 

7.5 Capacity 

In Chapter 6 of these notes, the channel capacity was defined. This concept can be generalized to other 
processes. 

Call W the maximum rate at which the input state of the process can be detected at the output. Then 
the rate at which information flows through the process can be as large as WM . However, this product 
depends on the input probability distribution p(Ai) and hence is not a property of the process itself, but on 
how it is used. A better definition of process capacity is found by looking at how M can vary with different 
input probability distributions. Select the largest mutual information for any input probability distribution, 
and call that Mmax. Then the process capacity C is defined as 

C = WMmax (7.32) 

It is easy to see that Mmax cannot be arbitrarily large, since M ≤ I and I ≤ log2 n where n is the number 
of distinct input states. 

In the example of symmetric binary channels, it is not difficult to show that the probability distribution 
that maximizes M is the one with equal probability for each of the two input states. 

7.6 Information Diagrams 

An information diagram is a representation of one or more processes explicitly showing the amount of 
information passing among them. It is a useful way of representing the input, output, and mutual information 
and the noise and loss. Information diagrams are at a high level of abstraction and do not display the detailed 
probabilities that give rise to these information measures. 

It has been shown that all five information measures, I, J , L, N , and M are nonnegative. It is not 
necessary that L and N be the same, although they are for the symmetric binary channel whose inputs have 
equal probabilities for 0 and 1. It is possible to have processes with loss but no noise (e.g., the XOR gate), 
or noise but no loss (e.g., the noisy channel for triple redundancy). 

It is convenient to think of information as a physical quantity that is transmitted through this process 
much the way physical material may be processed in a production line. The material being produced comes 
in to the manufacturing area, and some is lost due to errors or other causes, some contamination may be 
added (like noise) and the output quantity is the input quantity, less the loss, plus the noise. The useful 
product is the input minus the loss, or alternatively the output minus the noise. The flow of information 
through a discrete memoryless process is shown using this paradigm in Figure 7.9. 

An interesting question arises. Probabilities depend on your current state of knowledge, and one observer’s 
knowledge may be different from another’s. This means that the loss, the noise, and the information 
transmitted are all observer-dependent. Is it OK that important engineering quantities like noise and loss 
depend on who you are and what you know? If you happen to know something about the input that 
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I
input

J
output

L loss

M

N noise

Figure 7.9: Information flow in a discrete memoryless process 

your colleague does not, is it OK for your design of a nondeterministic process to be different, and to 
take advantage of your knowledge? This question is something to think about; there are times when your 
knowledge, if correct, can be very valuable in simplifying designs, but there are other times when it is prudent 
to design using some worst-case assumption of input probabilities so that in case the input does not conform 
to your assumed probabilities your design still works. 

Information diagrams are not often used for communication systems. There is usually no need to account 
for the noise sources or what happens to the lost information. However, such diagrams are useful in domains 
where noise and loss cannot occur. One example is reversible computing, a style of computation in which 
the entire process can, in principle, be run backwards. Another example is quantum communications, where 
information cannot be discarded without affecting the environment. 

7.6.1 Notation 

Different authors use different notation for the quantities we have here called I, J , L, N , and M . In his 
original paper Shannon called the input probability distribution x and the output distribution y. The input 
information I was denoted H(x) and the output information J was H(y). The loss L (which Shannon called 
“equivocation”) was denoted Hy(x) and the noise N was denoted Hx(y). The mutual information M was 
denoted R. Shannon used the word “entropy” to refer to information, and most authors have followed his 
lead. 

Frequently information quantities are denoted by I, H, or S, often as functions of probability distribu
tions, or “ensembles.” In physics entropy is often denoted S. 

Another common notation is to use A to stand for the input probability distribution, or ensemble, and 
B to stand for the output probability distribution. Then I is denoted I(A), J is I(B), L is I(A|B), N is 
I(B|A), and M is I(A; B). If there is a need for the information associated with A and B jointly (as opposed 
to conditionally) it can be denoted I(A,B) or I(AB). 

7.7 Cascaded Processes 

Consider two processes in cascade. This term refers to having the output from one process serve as 
the input to another process. Then the two cascaded processes can be modeled as one larger process, if the 
“internal” states are hidden. We have seen that discrete memoryless processes are characterized by values 
of I, J , L, N , and M . Figure 7.10(a) shows a cascaded pair of processes, each characterized by its own 
parameters. Of course the parameters of the second process depend on the input probabilities it encounters, 
which are determined by the transition probabilities (and input probabilities) of the first process. 

But the cascade of the two processes is itself a discrete memoryless process and therefore should have its 
own five parameters, as suggested in Figure 7.10(b). The parameters of the overall model can be calculated 
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Figure 7.10: Cascade of two discrete memoryless processes 

either of two ways. First, the transition probabilities of the overall process can be found from the transition 
probabilities of the two models that are connected together; in fact the matrix of transition probabilities is 
merely the matrix product of the two transition probability matrices for process 1 and process 2. All the 
parameters can be calculated from this matrix and the input probabilities. 

The other approach is to seek formulas for I, J , L, N , and M of the overall process in terms of the 
corresponding quantities for the component processes. This is trivial for the input and output quantities: 
I = I1 and J = J2. However, it is more difficult for L and N . Even though L and N cannot generally be 
found exactly from L1, L2, N1 and N2, it is possible to find upper and lower bounds for them. These are 
useful in providing insight into the operation of the cascade. 

It can be easily shown that since I = I1, J1 = I2, and J = J2, 

L − N = (L1 + L2) − (N1 + N2) (7.33) 

It is then straightforward (though perhaps tedious) to show that the loss L for the overall process is not 
always equal to the sum of the losses for the two components L1 + L2, but instead 

0 ≤ L1 ≤ L ≤ L1 + L2 (7.34) 

so that the loss is bounded from above and below. Also, 

L1 + L2 − N1 ≤ L ≤ L1 + L2 (7.35) 

so that if the first process is noise-free then L is exactly L1 + L2. 
There are similar formulas for N in terms of N1 + N2: 

0 ≤ N2 ≤ N ≤ N1 + N2 (7.36) 

N1 + N2 − L2 ≤ N ≤ N1 + N2 (7.37) 

Similar formulas for the mutual information of the cascade M follow from these results: 
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M1 − L2 ≤ M ≤ M1 ≤ I (7.38) 
M1 − L2 ≤ M ≤ M1 + N1 − L2 (7.39) 
M2 − N1 ≤ M ≤ M2 ≤ J (7.40) 
M2 − N1 ≤ M ≤ M2 + L2 − N1 (7.41) 

Other formulas for M are easily derived from Equation 7.19 applied to the first process and the cascade, 
and Equation 7.24 applied to the second process and the cascade: 

M = M1 + L1 − L 

= M1 + N1 + N2 − N − L2 

= M2 + N2 − N 

= M2 + L2 + L1 − L − N1 (7.42) 

where the second formula in each case comes from the use of Equation 7.33. 
Note that M cannot exceed either M1 or M2, i.e., M ≤ M1 and M ≤ M2. This is consistent with the 

interpretation of M as the information that gets through—information that gets through the cascade must 
be able to get through the first process and also through the second process. 

As a special case, if the second process is lossless, L2 = 0 and then M = M1. In that case, the second 
process does not lower the mutual information below that of the first process. Similarly if the first process 
is noiseless, then N1 = 0 and M = M2. 

The channel capacity C of the cascade is, similarly, no greater than either the channel capacity of the 
first process or that of the second process: C ≤ C1 and C ≤ C2. Other results relating the channel 
capacities are not a trivial consequence of the formulas above because C is by definition the maximum M 
over all possible input probability distributions—the distribution that maximizes M1 may not lead to the 
probability distribution for the input of the second process that maximizes M2. 
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