
Chapter 4

Errors

In Chapter 2 we saw examples of how symbols could be represented by arrays of bits. In Chapter 3 we
looked at some techniques of compressing the bit representations of such symbols, or a series of such symbols,
so fewer bits would be required to represent them. If this is done while preserving all the original information,
the compressions are said to be lossless, or reversible, but if done while losing (presumably unimportant)
information, the compression is called lossy, or irreversible. Frequently source coding and compression are
combined into one operation.

Because of compression, there are fewer bits carrying the same information, so each bit is more important,
and the consequence of an error in a single bit is more serious. All practical systems introduce errors to
information that they process (some systems more than others, of course). In this chapter we examine
techniques for insuring that such inevitable errors cause no harm.

4.1 Extension of System Model

Our model for information handling will be extended to include “channel coding.” The new channel
encoder adds bits to the message so that in case it gets corrupted in some way, the channel encoder will
know that and possibly even be able to repair the damage.

So
ur

ce
 E

nc
od

er

C
om

pr
es

so
r

C
ha

nn
el

 E
nc

od
er

N
oi

sy
 C

ha
nn

el

C
ha

nn
el

 D
ec

od
er

E
xp

an
de

r

So
ur

ce
 D

ec
od

er

� � � � � � � �Input Output

(Symbols) (Symbols)

Figure 4.1: Communication system with errors

44

45 4.2 How do Errors Happen?

4.2 How do Errors Happen?

The model pictured above is quite general, in that the purpose might be to transmit information from
one place to another (communication), store it for use later (data storage), or even process it so that the
output is not intended to be a faithful replica of the input (computation). Different systems involve different
physical devices as the channel (for example a communication link, a floppy disk, or a computer). Many
physical effects can cause errors. A CD or DVD can get scratched. A memory cell can fail. A telephone line
can be noisy. A computer gate can respond to an unwanted surge in power supply voltage.

For our purposes we will model all such errors as a change in one or more bits from 1 to 0 or vice versa.
In the usual case where a message consists of several bits, we will usually assume that different bits get
corrupted independently, but in some cases errors in adjacent bits are not independent of each other, but
instead have a common underlying cause (i.e., the errors may happen in bursts).

4.3 Detection vs. Correction

There are two approaches to dealing with errors. One is to detect the error and then let the person or
system that uses the output know that an error has occurred. The other is to have the channel decoder
attempt to repair the message by correcting the error. In both cases, extra bits are added to the messages
to make them longer. The result is that the message contains redundancy—if it did not, every possible
bit pattern would be a legal message and an error would simply change one valid message to another. By
changing things so that many (indeed, most) bit patterns do not correspond to legal messages, the effect of
an error is usually to change the message to one of the illegal patterns; the channel decoder can detect that
there was an error and take suitable action. In fact, if every illegal pattern is, in a sense to be described
below, closer to one legal message than any other, the decoder could substitute the closest legal message,
thereby repairing the damage.

In everyday life error detection and correction occur routinely. Written and spoken communication is
done with natural languages such as English, and there is sufficient redundancy (estimated at 50%) so that
even if several letters, sounds, or even words are omitted, humans can still understand the message.

Note that channel encoders, because they add bits to the pattern, generally preserve all the original
information, and therefore are reversible. The channel, by allowing errors to occur, actually introduces
information (the details of exactly which bits got changed). The decoder is irreversible in that it discards
some information, but if well designed it throws out the “bad” information caused by the errors, and keeps
the original information. In later chapters we will analyze the information flow in such systems quantitatively.

4.4 Hamming Distance

We need some technique for saying how similar two bit patterns are. In the case of physical quantities
such as length, it is quite natural to think of two measurements as being close, or approximately equal. Is
there a similar sense in which two patterns of bits are close?

At first it is tempting to say that two bit patterns are close if they represent integers that are adjacent,
or floating point numbers that are close. However, this notion is not useful because it is based on particular
meanings ascribed to the bit patterns. It is not obvious that two bit patterns which differ in the first bit
should be any more or less “different” from each other than two which differ in the last bit.

A more useful definition of the difference between two bit patterns is the number of bits that are different
between the two. This is called the Hamming distance, after Richard W. Hamming (1915 – 1998)1 . Thus
0110 and 1110 are separated by Hamming distance of one. Two patterns which are the same are separated
by Hamming distance of zero.

1See a biography of Hamming at http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Biographies/Hamming.html

http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Biographies/Hamming.html

46 4.5 Single Bits

Note that a Hamming distance can only be defined between two bit patterns with the same number of
bits. It does not make sense to speak of the Hamming distance of a single string of bits, or between two bit
strings of different lengths.

Using this definition, the effect of errors introduced in the channel can be described by the Hamming
distance between the two bit patterns, one at the input to the channel and the other at the output. No
errors means Hamming distance zero, and a single error means Hamming distance one. If two errors occur,
this generally means a Hamming distance of two. (Note, however, that if the two errors happen to the same
bit, the second would cancel the first, and the Hamming distance would actually be zero.)

The action of an encoder can also be appreciated in terms of Hamming distance. In order to provide error
detection, it is necessary that the encoder produce bit patterns so that any two different inputs are separated
in the output by Hamming distance at least two—otherwise a single error could convert one legal codeword
into another. In order to provide double-error protection the separation of any two valid codewords must be
at least three. In order for single-error correction to be possible, all valid codewords must be separated by
Hamming distance at least three.

4.5 Single Bits

Transmission of a single bit may not seem important, but it does bring up some commonly used techniques
for error detection and correction.

The way to protect a single bit is to send it more than once, and expect that more often than not each
bit sent will be unchanged. The simplest case is to send it twice. Thus the message 0 is replaced by 00 and
1 by 11 by the channel encoder. The decoder can then raise an alarm if the two bits are different (that can
only happen because of an error). But there is a subtle point. What if there are two errors? If the two
errors both happen on the same bit, then that bit gets restored to its original value and it is as though no
error happened. But if the two errors happen on different bits then they end up the same, although wrong,
and the error is undetected. If there are more errors, then the possibility of undetected changes becomes
substantial (an odd number of errors would be detected but an even number would not).

If multiple errors are likely, greater redundancy can help. Thus, to detect double errors, you can send
the single bit three times. Unless all three are the same when received by the channel decoder, it is known
that an error has occurred, but it is not known how many errors there might have been. And of course triple
errors may go undetected.

Now what can be done to allow the decoder to correct an error, not just detect one? If there is known
to be at most one error, and if a single bit is sent three times, then the channel decoder can tell whether
an error has occurred (if the three bits are not all the same) and it can also tell what the original value
was—the process used is sometimes called “majority logic” (choosing whichever bit occurs most often). This
technique, called ”triple redundancy” can be used to protect communication channels, memory, or arbitrary
computation.

Note that triple redundancy can be used either to correct single errors or to detect double errors, but
not both. If you need both, you can use quadruple redundancy—send four identical copies of the bit.

Two important issues are how efficient and how effective these techniques are. As for efficiency, it is
convenient to define the code rate as the number of bits before channel coding divided by the number after
the encoder. Thus the code rate lies between 0 and 1. Double redundancy leads to a code rate of 0.5, and
triple redundancy 0.33. As for effectiveness, if errors are very unlikely it may be reasonable to ignore the
even more unlikely case of two errors so close together. If so, triple redundancy is very effective. On the
other hand, some physical sources of errors may wipe out data in large bursts (think of a physical scratch
on a CD) in which case one error, even if unlikely, is apt to be accompanied by a similar error on adjacent
bits, so triple redundancy will not be effective.

Figures 4.2 and 4.3 illustrate how triple redundancy protects single errors but can fail if there are two
errors.

47 4.6 Multiple Bits

So
ur

ce
 E

nc
od

er

C
ha

nn
el

 E
nc

od
er

N
oi

sy
 C

ha
nn

el

C
ha

nn
el

 D
ec

od
er

So
ur

ce
 D

ec
od

er

� � � � � �Input Output

Heads 0 000 001 0 Heads

Figure 4.2: Triple redundancy channel encoding and single-error correction decoding, for a channel intro­
ducing one bit error.

So
ur

ce
 E

nc
od

er

C
ha

nn
el

 E
nc

od
er

V
er

y
N

oi
sy

 C
ha

nn
el

C
ha

nn
el

 D
ec

od
er

So
ur

ce
 D

ec
od

er

� � � � � �Input Output

Heads 0 000 101 1 Tails

Figure 4.3: Triple redundancy channel encoding and single-error correction decoding, for a channel intro­
ducing two bit errors.

4.6 Multiple Bits

To detect errors in a sequence of bits several techniques can be used. Some can perform error correction
as well as detection.

4.6.1 Parity

Consider a byte, which is 8 bits. To enable detection of single errors, a “parity” bit (also called a “check
bit”) can be added, changing the 8-bit string into 9 bits. The added bit would be 1 if the number of bits
equal to 1 is odd, and 0 otherwise. Thus the string of 9 bits would always have an even number of bits equal
to 1. Then the decoder would simply count the number of 1 bits and if it is odd, know there is an error (or,
more generally, an odd number of errors). The decoder could not repair the damage, and indeed could not
even tell if the damage might by chance have occurred in the parity bit, in which case the data bits would
still be correct. If would also not detect double errors (or more generally an even number of errors). The use
of parity bits is efficient, since the code rate is 8/9, but of limited effectiveness. It cannot deal with the case
where the channel represents computation and therefore the output is not intended to be the same as the
input. It is most often used when the likelihood of an error is very small, and there is no reason to suppose
that errors of adjacent bits occur together, and the receiver is able to request a retransmission of the data.

Sometimes parity is used even when retransmission is not possible. On early IBM Personal Computers,
memory references were protected by single-bit parity. When an error was detected (very infrequently), the
computer crashed.

Error correction is more useful than error detection, but requires more bits and is therefore less efficient.
Two of the more common methods are discussed next.

48 4.6 Multiple Bits

If the data being transmitted is more conveniently thought of as sequences of objects which themselves
may be coded in multiple bits, such as letters or digits, the advantages of parity bits can be achieved by
adding similar objects rather than parity bits. For example, check digits can be added to an array of digits.
Section 4.9 discusses some common uses of check digits.

4.6.2 Rectangular Codes

Rectangular codes can provide single error correction and double error detection simultaneously. Suppose
we wish to protect a byte of information, the eight data bits D0 D1 D2 D3 D4 D5 D6 D7. Let us arrange
these in a rectangular table and add parity bits for each of the two rows and four columns:

D0 D1 D2 D3 PR0
D4 D5 D6 D7 PR1
PC0 PC1 PC2 PC3 P

Table 4.1: Parity Bits

The idea is that each of the parity bits PR0 PR1 PC0 PC1 PC2 PC3 is set so that the overall parity
of the particular row or column is even. The total parity bit P is then set so that the right-hand column
consisting only of parity bits has itself even parity—this guarantees that the bottom row also has even parity.
The 15 bits can be sent through the channel and the decoder analyzes the received bits. It performs a total
of 8 parity checks, on the three rows and the five columns. If there is a single error in any one of the bits,
then one of the three row parities and one of the five column parities will be wrong. The offending bit can
thereby be identified (it lies at the intersection of the row and column with incorrect parity) and changed.
If there are two errors, there will be a different pattern of parity failures; double errors can be detected but
not corrected. Triple errors can be nasty in that they can mimic a single error of an innocent bit.

Other geometrically inspired codes can be devised, based on arranging the bits in triangles, cubes,
pyramids, wedges, or higher-dimensional structures.

4.6.3 Hamming Codes

Suppose we wish to correct single errors, and are willing to ignore the possibility of multiple errors. A
set of codes was invented by Richard Hamming with the minimum number of extra parity bits.

Each extra bit added by the channel encoder allows one check of a parity by the decoder and therefore
one bit of information that can be used to help identify the location of the error. For example, if three extra
bits are used, the three tests could identify up to eight error conditions. One of these would be “no error”
so seven would be left to identify the location of up to seven places in the pattern with an error. Thus the
data block could be seven bits long. Three of these bits would be added for error checking, leaving four for
the payload data. Similarly, if there were four parity bits, the block could be 15 bits long leaving 11 bits for
payload.

Codes that have as large a payload as possible for a given number of parity bits are sometimes called
“perfect.” It is possible, of course, to have a smaller payload, in which case the resulting Hamming codes
would have a lower code rate. For example, since much data processing is focused on bytes, each eight bits
long, a convenient Hamming code would be one using four parity bits to protect eight data bits. Thus two
bytes of data could be processed, along with the parity bits, in exactly three bytes.

Table 4.2 lists some Hamming codes. The trivial case of 1 parity bit is not shown because there is no
room for any data. The first entry is a simple one, and we have seen it already. It is triple redundancy, where
a block of three bits is sent for a single data bit. As we saw earlier, this scheme is capable of single-error
correction or double-error detection, but not both (this is true of all the Hamming Codes). The second entry
is one of considerable interest, since it is the simplest Hamming Code with reasonable efficiency.

Let’s design a (7, 4, 3) Hamming code. There are several ways to do this, but it is probably easiest to
start with the decoder. The decoder receives seven bits and performs three parity checks on groups of those

49 4.7 Block Codes

Parity bits Block size Payload Code rate Block code type
2 3 1 0.33 (3, 1, 3)
3 7 4 0.57 (7, 4, 3)
4 15 11 0.73 (15, 11, 3)
5 31 26 0.84 (31, 26, 3)
6 63 57 0.90 (63, 57, 3)
7 127 120 0.94 (127, 120, 3)
8 255 247 0.97 (255, 247, 3)

Table 4.2: Perfect Hamming Codes

bits with the intent of identifying where an error has occurred, if it has. Let’s label the bits 1 through 7. If
the results are all even parity, the decoder concludes that no error has occurred. Otherwise, the identity of
the changed bit is deduced by knowing which parity operations failed. Of the perfect Hamming codes with
three parity bits, one is particularly elegant:

• The first parity check uses bits 4, 5, 6, or 7 and therefore fails if one of them is changed

• The second parity check uses bits 2, 3, 6, or 7 and therefore fails if one of them is changed

• The third parity check uses bits 1, 3, 5, or 7 and therefore fails if one of them is changed

These rules are easy to remember. The three parity checks are part of the binary representation of the
location of the faulty bit—for example, the integer 6 has binary representation 1 1 0 which corresponds to
the first and second parity checks failing but not the third.

Now consider the encoder. Of these seven bits, four are the original data and three are added by the
encoder. If the original data bits are 3 5 6 7 it is easy for the encoder to calculate bits 1 2 4 from knowing
the rules given just above—for example, bit 2 is set to whatever is necessary to make the parity of bits 2 3
6 7 even which means 0 if the parity of bits 3 6 7 is already even and 1 otherwise. The encoder calculates
the parity bits and arranges all the bits in the desired order. Then the decoder, after correcting a bit if
necessary, can extract the data bits and discard the parity bits, which have done their job and are no longer
needed.

4.7 Block Codes

It is convenient to think in terms of providing error-correcting protection to a certain amount of data and
then sending the result in a block of length n. If the number of data bits in this block is k, then the number
of parity bits is n − k, and it is customary to call such a code an (n, k) block code. Thus the Hamming Code
just described is (7, 4).

It is also customary (and we shall do so in these notes) to include in the parentheses the minimum
Hamming distance d between any two valid codewords, or original data items, in the form (n, k, d). The
Hamming Code that we just described can then be categorized as a (7, 4, 3) block code.

4.8 Advanced Codes

Block codes with minimum Hamming distance greater than 3 are possible. They can handle more than
single errors. Some are known as Bose-Chaudhuri-Hocquenhem (BCH) codes. Of great commercial interest
today are a class of codes announced in 1960 by Irving S. Reed and Gustave Solomon of MIT Lincoln
Laboratory. These codes deal with bytes of data rather than bits. The (256, 224, 5) and (224, 192, 5)
Reed-Solomon codes are used in CD players and can, together, protect against long error bursts.

More advanced channel codes make use of past blocks of data as well as the present block. Both the
encoder and decoder for such codes need local memory but not necessarily very much. The data processing

50 4.8 Advanced Codes

for such advanced codes can be very challenging. It is not easy to develop a code that is efficient, protects
against large numbers of errors, is easy to program, and executes rapidly. One important class of codes is
known as convolutional codes, of which an important sub-class is trellis codes which are commonly used in
data modems.

51 4.9 Detail: Check Digits

4.9 Detail: Check Digits

Error detection is routinely used to reduce human error. Many times people must deal with long serial
numbers or character sequences that are read out loud or typed at a keyboard. Examples include credit-card
numbers, social security numbers, and software registration codes. These actions are prone to error. Extra
digits or characters can be included to detect errors, just as parity bits are included in bit strings. Often
this is sufficient because when an error is detected the operation can be repeated conveniently.

In other cases, such as telephone numbers or e-mail addresses, no check characters are used, and therefore
any sequence may be valid. Obviously more care must be exercised in using these, to avoid dialing a wrong
number or sending an e-mail message or fax to the wrong person.

Credit Cards

Credit card numbers have an extra check digit calculated in a way specified in 1954 by H. P. Luhn of
IBM. It is designed to guard against a common type of error, which is transposition of two adjacent digits.

Credit card numbers typically contain 15 or 16 digits (Luhn’s algorithm actually works for any number of
digits). The first six digits denote the organization that issued the card. The financial industry discourages
public disclosure of these codes, though most are already widely known, certainly to those seriously consid­
ering fraud. Of those six digits, the first denotes the economic sector associated with the card, for example
1 and 2 for airlines, 3 for travel and entertainment, and 4, 5, and 6 for banks and stores. The last digit is
the check digit, and the other digits denote the individual card account.

Credit card issuers have been assigned their own prefixes in accordance with this scheme. For example,
American Express cards have numbers starting with either 34 or 38, Visa with 4, MasterCard with 51, 52,
53, 54, or 55, and Discover with 6011 or 65.

The Luhn procedure tests whether a credit card number, including the check digit, is valid. First, select
those digits from the card number that appear in alternate positions, starting with the next-to-last digit.
For example, if the card number is 1234 4567 7891, those digits would be 9, 7, 6, 4, 3, and 1. Note how
many of those digits are greater than 4 (in this case 3 of them). Then add those digits together (for the
example, 9 + 7 + 6 + 4 + 3 + 1 = 30). Then add all the digits in the card number (in this example, 57). Look
at the sum of those three numbers (in this case 3 + 30 + 57 = 90). If the result is a multiple of 10, as in this
example, the card number passes the test and may be valid. Otherwise, it is not.

This procedure detects all single-digit errors, and almost all transpositions of adjacent digits (such as
typing “1243” instead of “1234”), but there are many other possible transcription errors that are not caught,
for example “3412” instead of “1234”. It has a high code rate (only one check digit added to 14 or 15 payload
digits) and is simple to use. It cannot be used to correct the error, and is therefore of value only in a context
where other means are used for correction.

ISBN

The International Standard Book Number (ISBN) is a 13-digit number that uniquely identifies a book
or something similar to a book. Different editions of the same book may have different ISBNs. The book
may be in printed form or it may be an e-book, audio cassette, or software. ISBNs are not of much interest
to consumers, but they are useful to booksellers, libraries, authors, publishers, and distributors.

The system was created by the British bookseller W. H. Smith in 1966 using 9-digit numbers, then
upgraded in 1970 for international use by prepending 0 to existing numbers, and then upgraded in 2007 to
13-digit numbers by prepending 978 and recalculating the check digit.

A book’s ISBN appears as a number following the letters “ISBN”, most often on the back of the dust
jacket or the back cover of a paperback. Typically it is near some bar codes and is frequently rendered in a
machine-readable font.

There are five parts to an ISBN (four prior to 2007), of variable length, separated by hyphens. First
is the prefix 978 (missing prior to 2007). When the numbers using this prefix are exhausted, the prefix
979 will be used. Next is a country identifier (or groups of countries or areas sharing a common language).

52 4.9 Detail: Check Digits

Next is a number that identifies a particular publisher. Then is the identifier of the title, and finally the
single check digit. Country identifiers are assigned by the International ISBN Agency, located in Berlin.
Publisher identifiers are assigned within the country or area represented, and title identifiers are assigned by
the publishers. The check digit is calculated as described below.

For example, consider ISBN 0-9764731-0-0 (which is in the pre-2007 format). The language area code of
0 represents English speaking countries. The publisher 9764731 is the Department of Electrical Engineering
and Computer Science, MIT. The item identifier 0 represents the book “The Electron and the Bit.” The
identifier is 0 resulted from the fact that this book is the first published using an ISBN by this publisher.
The fact that 7 digits were used to identify the publisher and only one the item reflects the reality that
this is a very small publisher that will probably not need more than ten ISBNs. ISBNs can be purchased
in sets of 10 (for $269.95 as of 2007), 100 ($914.95), 1000 ($1429.95) or 10,000 ($3449.95) and the publisher
identifiers assigned at the time of purchase would have 7, 6, 5, or 4 digits, respectively. This arrangement
conveniently handles many small publishers and a few large publishers.

Publication trends favoring many small publishers rather than fewer large publishers may strain the
ISBN system. Small publishers have to buy numbers at least 10 at a time, and if only one or two books are
published, the unused numbers cannot be used by another publisher. Organizations that are primarily not
publishers but occasionally publish a book are likely to lose the unused ISBNs because nobody can remember
where they were last put.

Books published in 2007 and later have a 13-digit ISBN which is designed to be compatible with UPC
(Universal Product Code) barcodes widely used in stores. The procedure for finding UPC check digits is
used for 13-digit ISBNs. Start with the 12 digits (without the check digit). Add the first, third, fifth, and
other digits in odd-number positions together and multiply the sum by 3. Then add the result to the sum
of digits in the even-numbered positions (2, 4, 6, 8 10, and 12). Subtract the result from the next higher
multiple of 10. The result, a number between 0 and 9, inclusive, is the desired check digit.

This technique yields a code with a large code rate (0.92) that catches all single-digit errors but not all
transposition errors.

For books published prior to 2007, the check digit can be calculated by the following procedure. Start
with the nine-digit number (without the check digit). Multiply each by its position, with the left-most
position being 1, and the right-most position 9. Add those products, and find the sum’s residue modulo
11 (that is, the number you have to subtract in order to make the result a multiple of 11). The result is a
number between 0 and 10. That is the check digit. For example, for ISBN 0-9764731-0-0, 1 × 0 + 2 × 9 +
3 × 7 + 4 × 6 + 5 × 4 + 6 × 7 + 7 × 3 + 8 × 1 + 9 × 0 = 154 which is 0 mod 11.

If the check digit is less than ten, it is used in the ISBN. If the check digit is 10, the letter X is used
instead (this is the Roman numeral for ten). If you look at several books, you will discover every so often
the check digit X.

This technique yields a code with a large code rate (0.9) that is effective in detecting the transposition
of two adjacent digits or the alteration of any single digit.

ISSN

The International Standard Serial Number (ISSN) is an 8-digit number that uniquely identifies print or
non-print serial publications. An ISSN is written in the form ISSN 1234-5678 in each issue of the serial. They
are usually not even noticed by the general public, but are useful to publishers, distributors, and libraries.

ISSNs are used for newspapers, magazines, and many other types of periodicals including journals, society
transactions, monographic series, and even blogs. An ISSN applies to the series as a whole, which is expected
to continue indefinitely, rather than individual issues. The assignments are permanent—if a serial ceases to
publish, the ISSN is not recovered, and if a serial changes its name a new ISSN is required. In the United
States ISSNs are issued, one at a time, without charge, by an office at the Library of Congress.

Unlike ISBNs, there is no meaning associated with parts of an ISSN, except that the first seven digits
form a unique number, and the last is a check digit. No more than 10,000,000 ISSNs can ever be assigned
unless the format is changed. As of 2006, there were 1,284,413 assigned worldwide, including 57,356 issued
that year.

53 4.9 Detail: Check Digits

The check digit is calculated by the following procedure. Start with the seven-digit number (without the
check digit). Multiply each digit by its (backwards) position, with the left-most position being 8 and the
right-most position 2. Add up these products and subtract from the next higher multiple of 11. The result
is a number between 0 and 10. If it is less than 10, that digit is the check digit. If it is equal to 10, the check
digit is X. The check digit becomes the eighth digit of the final ISSN.

MIT OpenCourseWare
http://ocw.mit.edu

6.050J / 2.110J Information and Entropy
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	4 Errors
	4.1 Extension of System Model
	4.2 How do Errors Happen?
	4.3 Detection vs. Correction
	4.4 Hamming Distance
	4.5 Single Bits
	4.6 Multiple Bits
	4.6.1 Parity
	4.6.2 Rectangular Codes
	4.6.3 Hamming Codes

	4.7 Block Codes
	4.8 Advanced Codes
	4.9 Detail: Check Digits

