
Chapter 12 

Temperature 

In previous chapters of these notes we introduced the Principle of Maximum Entropy as a technique for 
estimating probability distributions consistent with constraints. 

In Chapter 8 we discussed the simple case that can be done analytically, in which there are three prob
abilities, one constraint in the form of an average value, and the fact that the probabilities add up to one. 
There are, then, two equations and three unknowns, and it is straightforward to express the entropy in terms 
of one of the unknowns, eliminating the others, and find the maximum. This approach also works if there 
are four probabilities and two average-value constraints, in which case there is again one fewer equation than 
unknown. 

In Chapter 9 we discussed a general case in which there are many probabilities but only one average 
constraint, so that the entropy cannot be expressed in terms of a single probability. The result previously 
derived using the method of Lagrange multipliers was given. 

In Chapter 11 we looked at the implications of the Principle of Maximum Entropy for physical systems 
that adhere to the multi-state model motivated by quantum mechanics, as outlined in Chapter 10. 

We found that the dual variable β plays a central role. Its value indicates whether states with high or 
low energy are occupied (or have a higher probability of being occupied). From it all the other quantities, 
including the expected value of energy and the entropy, can be calculated. 

In this chapter, we will interpret β further, and will define its reciprocal as (to within a scale factor) 
the temperature of the material. Then we will see that there are constraints on the efficiency of energy 
conversion that can be expressed naturally in terms of temperature. 

12.1 Temperature Scales 

A heat engine is a machine that extracts heat from the environment and produces work, typically in 
mechanical or electrical form. As we will see, for a heat engine to function there need to be two different 
environments available. The formulas below place restrictions on the efficiency of energy conversion, in terms 
of the different values of β of the two environments. We will derive these restrictions. 

First, however, it is useful to start to deal with the reciprocal of β rather than β itself. Recall that β is 
an intensive property: if two systems with different values of β are brought into contact, they will end up 
with a common value of β, somewhere between the original two values, and the overall entropy will rise. The 
same is true of 1/β, and indeed of any constant times 1/β. (Actually this statement is not true if one of the 
two values of β is positive and the other is negative; in this case the resulting value of β is intermediate but 
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132 12.2 Heat Engine 

the resulting value of 1/β is not.) Note that 1/β can, by using the formulas in Chapter 11, be interpreted 
as a small change in energy divided by the change in entropy that causes it, to within the scale factor kB . 

Let us define the “absolute temperature” as 

1 
T = (12.1)

kB β 

where kB = 1.381 × 10−23 Joules per Kelvin is Boltzmann’s constant. The probability distribution that 
comes from the use of the Principle of Maximum Entropy is, when written in terms of T , 

pi = e−α e−βEi (12.2) 

= e−α e−Ei/kB T (12.3) 

The interpretation of β in terms of temperature is consistent with the everyday properties of temperature, 
namely that two bodies at the same temperature do not exchange heat, and if two bodies at different 
temperatures come into contact one heats up and the other cools down so that their temperatures approach 
each other. In ordinary experience absolute temperature is positive, and the corresponding value of β is also. 
Because temperature is a more familiar concept than dual variables or Lagrange multipliers, from now on 
we will express our results in terms of temperature. 

Absolute temperature T is measured in Kelvins (sometimes incorrectly called degrees Kelvin), in honor 
of William Thomson (1824–1907), who proposed an absolute temperature scale in 1848.1 The Celsius scale, 
which is commonly used by the general public in most countries of the world, differs from the Kelvin scale by 
an additive constant, and the Fahrenheit scale, which is in common use in the United States, differs by both 
an additive constant and a multiplicative factor. Finally, to complete the roster of scales, William Rankine 
(1820–1872) proposed a scale which had 0 the same as the Kelvin scale, but the size of the degrees was the 
same as in the Fahrenheit scale. 

More than one temperature scale is needed because temperature is used for both scientific purposes (for 
which the Kelvin scale is well suited) and everyday experience. Naturally, the early scales were designed 
for use by the general public. Gabriel Fahrenheit (1686–1736) wanted a scale where the hottest and coldest 
weather in Europe would lie between 0 and 100. He realized that most people can deal most easily with 
numbers in that range. In 1742 Anders Celsius (1701–1744) decided that temperatures between 0 and 100 
should cover the range where water is a liquid. In his initial Centigrade Scale, he represented the boiling 
point of water as 0 degrees and the freezing point as 100 degrees. Two years later it was suggested that 
these points be reversed.2 The result, named after Celsius in 1948, is now used throughout the world. 

For general interest, Table 12.1 shows a few temperatures of interest on the four scales, along with β. 

12.2 Heat Engine 

The magnetic-dipole system we are considering is shown in Figure 12.1, where there are two environ
ments at different temperatures, and the interaction of each with the system can be controlled by having 
the barriers either present or not (shown in the Figure as present). Although Figure 12.1 shows two dipoles 
in the system, the analysis here works with only one dipole, or with more than two, so long as there are 
many fewer dipoles in the system than in either environment. 

Now let us rewrite the formulas from Chapter 11 with the use of β replaced by temperature. Thus 
Equations 11.8 to 11.12 become 

1Thomson was a prolific scientist/engineer at Glasgow University in Scotland, with major contributions to electromagnetism, 
thermodynamics, and their industrial applications. He invented the name “Maxwell’s Demon.” In 1892 he was created Baron 
Kelvin of Largs for his work on the transatlantic cable. Kelvin is the name of the river that flows through the University. 

2According to some accounts the suggestion was made by Carolus Linnaeus (1707–1778), a colleague on the faculty of 
Uppsala University and a protege of Celsius’ uncle. Linnaeus is best known as the inventor of the scientific notation for plants 
and animals that is used to this day by botanists and zoologists. 
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133 12.2 Heat Engine 

K ◦C ◦F ◦R kB T = β 
1 (J) β (J−1) 

Absolute Zero 

Outer Space (approx) 
Liquid Helium bp 

Liquid Nitrogen bp 

Water mp 

Room Temperature (approx) 
Water bp 

0 -273.15 -459.67 0 0 ∞
2.7 -270 -455 4.9 3.73 × 10−23 2.68 × 1022 

4.22 -268.93 -452.07 7.6 5.83 × 10−23 1.72 × 1022 

77.34 -195.81 -320.46 139.2 1.07 × 10−21 9.36 × 1020 

273.15 0.00 32.00 491.67 3.73 × 10−21 2.65 × 1020 

290 17 62 520 4.00 × 10−21 2.50 × 1020 

373.15 100.00 212.00 671.67 5.15 × 10−21 1.94 × 1020 

Table 12.1: Various temperatures of interest 
(bp = boiling point, mp = melting point) 

⊗ ⊗ ⊗ · · · ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ · · · ⊗ ⊗ ⊗ 

H↑ ↑ 

Figure 12.1: Dipole moment example. 
(Each dipole can be either up or down.) 

1 = pi (12.4) 
i 

E = piEi (12.5) 
i � � 

1 
� 

S = kB pi ln (12.6) 
pii 

pi = e−α e−Ei/kB T (12.7) 

α = ln e−Ei/kB T 

i 

S E 
= 

kB 
− 

kB T 
(12.8) 

The differential formulas from Chapter 11 for the case of the dipole model where each state has an energy 
proportional to H, Equations 11.30 to 11.36 become 
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134 12.3 Energy-Conversion Cycle 

0 = dpi (12.9) 
i � E 

dE = Ei(H) dpi + dH (12.10)
H 

i 

E 
TdS = dE − dH (12.11)

H � ��� � � � � 
E 1 1 

dα = dT − dH (12.12)
kB T T H � � �� � � � � 

dpi = pi 
Ei(

k

H

B 

) 
T 
− E

T 
1 

dT − 
H 
1 

dH (12.13) � �� ��� � � � � � �� 1 1 1 E 
dE = pi(Ei(H) − E)2 dT − dH + dH (12.14)

kB T T H H 
i� �� ��� � � � �� 1 1 1 

TdS = pi(Ei(H) − E)2 dT − dH (12.15)
kB T T H 

i 

and the change in energy can be attributed to the effects of work dw and heat dq 

E 
dw = dH (12.16)

H 

dq = Ei(H) dpi 

i 

= TdS (12.17) 

12.3 Energy-Conversion Cycle 

This system can act as a heat engine if the interaction of the system with its environments, and the 
externally applied magnetic field, are both controlled appropriately. The idea is to make the system change 
in a way to be described, so that is goes through a succession of states and returns to the starting state. 
This represents one cycle, which can then be repeated many times. During one cycle heat is exchanged with 
the two environments, and work is exchanged between the system and the agent controlling the magnetic 
field. If the system, over a single cycle, gets more energy in the form of heat from the environments than it 
gives back to them, then energy must have been delivered to the agent controlling the magnetic field in the 
form of work. 

The cycle of the heat engine is shown below in Figure 12.2. Without loss of generality we can treat the 
case where H is positive. Assume that the left environment has a temperature T1 which is positive but less 
(i.e., a higher value of β) than the temperature T2 for the right environment (the two temperatures must be 
different for the device to work). This cycle is shown on the plane formed by axes corresponding to S and 
T of the system, and forms a rectangle, with corners marked a, b, c, and d, and sides corresponding to the 
values S1, S2, T1, and T2. 

Since the temperatures are assumed to be positive, the lower energy levels have a higher probability of 
being occupied. Therefore, the way we have defined the energies here, the energy E is negative. Thus as 
the field gets stronger, the energy gets more negative, which means that energy actually gets delivered from 
the system to the magnetic apparatus. Think of the magnetic field as increasing because a large permanent 
magnet is physically moved toward the system. The magnetic dipoles in the system exert a force of attraction 
on that magnet so as to draw it toward the system, and this force on the magnet as it is moved could be 
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Figure 12.2: Temperature Cycle 

used to stretch a spring or raise a weight against gravity, thereby storing this energy. Energy that moves 
into the system (or out of the system) of a form like this, that can come from (or be added to) an external 
source of energy is work (or negative work). 

First consider the bottom leg of this cycle, during which the temperature of the system is increased 
from T1 to T2 without change in entropy. An operation without change in entropy is called adiabatic. By 
Equation 12.15 above, increasing T is accomplished by increasing H, while not permitting the system to 
interact with either of its two environments. (In other words, the barriers preventing the dipoles in the 
system from interacting with those in either of the two environments are in place.) The energy of the system 
goes down (to a more negative value) during this leg, so energy is being given to the external apparatus that 
produces the magnetic field, and the work done on the system is negative. 

Next, consider the right-hand leg of this cycle, during which the entropy is increased from S1 to S2 at 
constant temperature T2. This step, at constant temperature, is called isothermal. According to Equa
tion 12.15, this is accomplished by decreasing H, while the system is in contact with the right environment, 
which is assumed to be at temperature T2. (In other words, the barrier on the left in Figure 12.1 is left in 
place but that on the right is withdrawn.) During this leg the change in energy E arises from heat, flowing 
in from the high-temperature environment, and work from the external magnetic apparatus. The heat is 
T2(S2 − S1) and the work is positive since the decreasing H during this leg drives the energy toward 0. 

The next two legs are similar to the first two except the work and heat are opposite in direction, i.e., the 
heat is negative because energy flows from the system to the low-temperature environment. During the top 
leg the system is isolated from both environments, so the action is adiabatic. During the left-hand isothermal 
leg the system interacts with the low-temperature environment. 

After going around this cycle, the system is back where it started in terms of its energy, magnetic field, 
and entropy. The two environments are slightly changed but we assume that they are each so much larger 
than the system in terms of the number of dipoles present that they have not changed much. The net 
change is a slight loss of entropy for the high-temperature environment and a gain of an equal amount of 
entropy for the low-temperature environment. Because these are at different temperatures, the energy that 
is transferred when the heat flow happens is different—it is proportional to the temperature and therefore 
more energy leaves the high-temperature environment than goes into the low-temperature environment. The 
difference is a net negative work which shows up as energy at the magnetic apparatus. Thus heat from two 
environments is converted to work. The amount converted is nonzero only if the two environments are at 
different temperatures. 

Table 12.2 summarizes the heat engine cycle. 
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Leg Start End Type dS dT H E Heat in Work in 

bottom a b adiabatic 0 positive increases decreases 0 negative 

right b c isothermal positive 0 decreases increases positive positive 

top c d adiabatic 0 negative decreases increases 0 positive 

left d a isothermal negative 0 increases decreases negative negative 

Total a a complete cycle 0 0 no change no change positive negative 

Table 12.2: Energy cycle 

For each cycle the energy lost by the high-temperature environment is T2(S2 − S1) and the energy 
gained by the low-temperature environment is T1(S2 − S1) and so the net energy converted is the difference 
(T2 − T1)(S2 − S1). It would be desirable for a heat engine to convert as much of the heat lost by the 
high-temperature environment as possible to work. The machine here has efficiency 

work out 
= 

T2 − T1 (12.18)
high-temperature heat in T2 

This ratio is known as the Carnot efficiency, named after the French physicist Sadi Nicolas Léonard 
Carnot (1796 - 1832).3 He was the first to recognize that heat engines could not have perfect efficiency, and 
that the efficiency limit (which was subsequently named after him) applies to all types of reversible heat 
engines. 

The operations described above are reversible, i.e., the entire cycle can be run backwards, with the result 
that heat is pumped from the low-temperature environment to the one at high temperature. This action 
does not occur naturally, and indeed a similar analysis shows that work must be delivered by the magnetic 
apparatus to the magnetic dipoles for this to happen, so that more heat gets put into the high-temperature 
environment than is lost by the low-temperature environment. Heat engines run in this reverse fashion act 
as refrigerators or heat pumps. 

3For a biography check out http://www-groups.dcs.st-andrews.ac.uk/∼history/Mathematicians/Carnot Sadi.html 

http://www-groups.dcs.st-andrews.ac.uk/%7Ehistory/Mathematicians/Carnot_Sadi.html
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