MIT 6.047/6.878/HST.507 - Computational Biology: Genomes, Networks, Evolution

Lecture 2\$

Personal genomics, disease epigenomics, systems approaches to disease

Predictive Medicine Molecular Epidemiology Mendelian Randomization Polygenic Risk Prediction Models

Personal genomics today: 23 and We

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Systems: genes -> combinations -> pathways

Genomics: Regions \rightarrow mechanisms \rightarrow drugs

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Epidemiology The study of the patterns, causes, and effects of health and disease conditions in defined populations

Epidemiology: Definitions and terms

- Morbidity level: how sick an individual is
- Incidence: # of *new* cases / # people / time period
- **Prevalence**: Total # of cases in population
- Attributable risk: rate in exposed vs. not exposed
- **Population burden**: yrs of potential life lost (YPLL), quality-/disability-adjusted life year (QALY/DALY)
- **Syndrome:** Co-occurring signs (observed), symptomes (reported), and other phenomena; (often hard to establish causality / risk factors)
- **Prevention challenge:** Determine disease, cause, understand whether, when, and how to intervene

Determining disease causes: study design

- Principles of experimental design
 - Control: comparison to baseline, placebo effect
 - Randomization: Difficult to achieve, ensure mixing
 - Replication: control variability in initial sample
 - Grouping: understand variation between subgroups
 - Orthogonality: all combinations of factors/treatments
 - **Combinatorics**: factorial design *n* × *n* × *n* × *n* × *n* × *n* table
- Challenge of human subjects
 - Legal and ethical constraints, Review boards
 - Randomization by instrumental variables
 - Clinical trials: blind (patient), double-blind (doctor too)

Goal: Personalized and Predictive Medicine

1. Intro to Epidemiology: basis of human disease

- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Genetic Epidemiology

Genetic factors contributing to disease

Genome-wide association studies (GWAS)

- Identify regions that co-vary with the disease
- Risk allele G more frequent in patients, A in controls
- But: large regions co-inherited
 find causal variant
- Genetics does not specify cell type or process

All disease-associated genotypes from GWAS

Courtesy of Burdett T (EBI), Hall PN (NHGRI), Hastings E (EBI), Hindorff LA (NHGRI), Junkins HA (NHGRI), Klemm AK (NHGRI), MacArthur J (EBI), Manolio TA (NHGRI), Morales J (EBI), Parkinson H (EBI) and Welter D (EBI). The NHGRI-EBI Catalog of published genome-wide association studies. Available at: www.ebi.ac.uk/gwas. Used with Permission.

- 1000s of studies, each with 1000s of individuals
 - Increasing power, meta-analyses reveal additional loci
 - More loci expected, only fraction of heritability explained

More loci on the way: GWAS growth continues

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- When to design custom chip: continuously update
- http://www.genome.gov/admin/gwascatalog.txt

Decreasing cost of whole-genome sequencing

Image by Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/sequencingcosts. Image in the public domain.

- Simply genotype all known variants at >0.1% freq
- Or: sequence complete diploid genome of everyone

Genetic epidemiology: What to test

- Family risk alleles, inherited with common trait — Specific genes, specific variants, family history
- Monogenic, actionable, protein-coding mutations
 Most understood, highest impact, easiest to interpret
- All coding SNPs with known disease association
 What if not druggable / treatable? Want/need know?
- All coding/non-coding associations from GWAS

 Thousands of significant associations (1350 on 6/2012)
- All common SNPs, regardless of association
 - HapMap and 1000 Genomes capture common variants
- Genome: all SNPs, CNVs, rare/private mutations

Predictive medicine: When to screen

- **Diagnostic testing:** after symptoms, confirm a hypothesis, distinguish between possibilities
- **Predictive risk:** before symptoms even manifest
- **Newborn**: heel pick, store, for early treatment
- **Pre-natal testing:** ulstrasound, maternal serum vs. needles, probes, chorionic villus sampling
- **Pre-conception testing:** common/rare disorders
- **Carrier testing**: specific mutation in family history
- Genetics vs. biomarkers : cause vs. consequence?

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Interpreting disease associations

Functional genomics of GWAS

Interpreting disease-association signals

- Chromatin states: Enhancers, promoters, motifs

- Enrichment in individual loci, across 1000s of SNPs in T1D

(2) Epigenome changes in disease

- Intermediate molecular phenotypes associated with disease

- Variation in brain methylomes of Alzheimer's patients

Complex disease: strong non-coding component

Human Genetic Mutation Database April 2010 release Catalog of GWAS studies Hindorff et al. PNAS 2009

Genomic medicine: challenge and promises

Courtesy of Macmillan Publishers Limited. Used with permission Source: Hillmer, A. M., Brockschmidt, F. F., Hanneken, S., Eigelshoven, S., Steffens, M., Flaquer, A., . . . Nöthen, M. M. (2008). "Susceptibility variants for male-pattern baldness on chromosome 20p11." Nature Genetics Nat Genet, 40(11), 1279-1281. doi:10.1038/ng.228

Hillmer Nature Genetics 2008

- 1. The promise of genetics
 - Disease mechanism
 - New target genes
 - New therapeutics
 - Personalized medicine

- 2. The challenge
 - 90+% disease hits non-coding
 - Cell type of action not known
 - Causal variant not known
 - Mechanism not known

Genomic medicine: challenge and promises

Courtesy of NIH Roadmap Epigenomics Mapping Consortium. Used with permission.

Roadmap Epigenomics, Nature 2015

7ci fhYgmcZAUVai]``Ub`Di V`]g\Yfg`@]a]hYX''I gYX'k]h\`dYfa]gg]cb'' Gci fVVf. `9fbghž`>''Yh'U`''`f&\$%%L''AUdd]b[`UbX`UbU`mg]g`cZ'W\fca Uh]b ghUhY`XmbUa]Vyj`]b`b]bY`\i a Ub`WY```hmdYg''`BUhi fYž`(+' f\+' () Łž`(' ! (-''

3. The remedy

- Annotation of non-coding genome (ENCODE/Roadmap)
- Linking of enhancers to regulators and target genes
- New methods for utilizing them
- 4. The deliverables
 - Relevant cell type
 - Target genes
 - Causal variant
 - Upstream regulator
 - Relevant pathways
 - Intermediate phenotypes

Ernst, Nature 2011

This talk: From loci to mechanisms

Building a reference map of the regulatory genome

Application to GWAS, hidden heritability, and Cancer

GWAS hits	CATGCCTG C <mark>G</mark> TGTCTA	 • 93% top hits non-coding → Mechanism? Cell type? → Lie in haplotype blocks → Causal variant(s)?
'Hidden' heritability	CATGCCTG C <mark>G</mark> TGTCTA	 Many variants, small effects → Pathway-level burden/load Many false positives → Prioritize w/ regulatory annotations
Cancer mutations	CATGCCTG CAT <mark>C</mark> CCTG	 Loss of function → Protein-coding variants, convergence Gain of function → Regulatory variants, heterogeneity

Dissecting non-coding genetic associations

- 1. Establish relevant tissue/cell type
- 2. Establish downstream target gene(s)
- 3. Establishing causal nucleotide variant
- 4. Establish upstream **regulator** causality
- 5. Establish **cellular** phenotypic consequences
- 6. Establish organismal phenotypic consequences

Using epigenomic maps to predict disease-relevant tissues

Identifying disease-relevant cell types

- For every trait in the GWAS catalog:
 - Identify all associated regions at P-value threshold
 - Consider all SNPs in credible interval ($R^2 \ge .8$)
 - Evaluate overlap with tissue-specific enhancers
 - Keep tissues showing significant enrichment (P<0.001)
- Repeat for all traits (rows) and all cell types (columns)

GWAS hits in enhancers of relevant cell types

		lung fibn	1 MSCs ar cells p	tor/mem blood cells pe ls periph	IS PMA-I cells PW mory cel mory cel	nory cells ve cells p e cells p periph.	ietic sten F-mobili F-mobili term cult	peripheral peripher	rived MS d adipoc roblasts	roblasts elanocyte ratinocyt	epithelial s campus i	antià nigi or cauda: ate gyru: r tempor	ar gyrus ntal corte clei	e trunk e trunk	smooth r oth musc nooth mu ne small	ne large ine on	cosa osa osa	mucosa	slets	200	II leukaer mphobla Mical cal	atocellula emia CD14 ⁺ F Syte
		<u>80 f</u> etal 548	DF 19.1 DF 19.1 derived nonucle?	ells effection gulatory elper cel	elper cel elper 17 elper me	D8+ mer alper nai D8+ naiv 10cytes	matopo S G-CS CS G-CS CS G-CS CS Short	ells perig ural kille trophils C-derive	oose-de C-derive eskin fib	eskin fib eskin m(eskin ke	ast myo mus al thymu in hippo	in subst in anteri in cingul in inferio	in angula in prefro	iletat mu al muscl al muscl i ventricl ta	denum tal smoo mach sn al intesti	al intesti all intest moid col	onic mu tal muco tal muco tal muco	denum tric senta arr	creatic i zenta ar	creas g een	е С(С) - 41 Т се 12878 ly a-S3 се	oG2 hep: 2 leukae A astro eoblast
	Most enrich	hed AT		558222 		02050 HHHZŒ 8880		Ñ6rstÖ ⊠NND ∎000	Adi No No Filo		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1220 (001	N A N W N A N M N M M M M M M M
Trait	Abbrev	-logP	E00 E00	ПППППП 9000000 9400440	100 100 100 100 100 100 100 100 100 100	E04 03 04 03 04 03		E04 03	E052	600 E00		2000 0000 0000 0000 0000 0000 0000 000	E06			800 000 000 000	2007 1007 1010					28888 28888
Height Height	ESC	4.7 0																				
Crohn's disease	Tper	7.7																				
Chronic lymphocytic leukaemia Type 1 diabetes autoantibodies	Tcor	4.9												++++	++++		+++	++++		+++	+++	
Type 1 diabetes	Treg	4.1		0																		
Platelet counts Chronic lymphocytic leukaemia	Th.nai Th.stm	4.6	+++++																+++		+++	
self-reported allergy	Th.stm	4.9			0																	
Celiac disease	Th17st	6.9						┼┼┼╟				+++		++++	++++			++++		+++		
Rheumatoid arthritis	Th17st	4.2			0																	
Celiac disease + rheum. arthritis	Th.mm	5.6	┼┼┣╇		0									++++	┍╸┼┼╴			┍╸┠╶╏		┼┍╉		
Type 1 diabetes Systemic lucus on the material	Th.mm	5.5			0																	
Systemic lupus erythematosus	Bcor	5.4																				
Primary biliary cirrhosis Red blood cell traits	Bcor	3.9			++++			┝╄┼╫╴						++++	++++					+++		
Platelet counts	HSCmb	8.0					0															
Mean platelet volume Mean platelet volume	HSCmb	3.9			++++			┞┼┼╟							++++				+++		+++	
Rheumatoid arthritis	Bper	8.6						0														
Rheumatoid arthritis	NKper	5.0																	+++			
Mean platelet volume	Fat	4.2							0													
Height	Fblast	4.9								0												
Multiple myeloma	Thym	4.2									0	0										
Attention deficit hyperact. dison	d. Brain	4.5										0										
PR Interval Blood pressure	Heart	4.7	++++		++++		++++	$\left \right $						0	++++		+++	++++	+++			
Aortic root size	Vascl	4.1																				
Liver enzyme levels (g-glut tx)	GLInt	4.2	++++				+++					+++			0					+++		
Urate levels	GLInt CLMuc	4.5														0						
Breast cancer	Stome	4.5																				
Type 2 diabetes Insulin-like growth factors	Stome Placet	4.3	++++		++++		++++	$\left \right \left \right $						++++	++++						+++	
Fasting glucose-related traits	P.islets	4.1																	0			
LDL cholesterol Cholesterol, total	Liver	9.0	++++	++++	++++		+++	┼┼┼╟					$\left \right $	++++	++++		+++	++++		+++	+++	
Cholesterol, total	Liver	7.1																				
Lipid metabolism phenotypes	Liver	5.8	++++				+++	┼┼┼╟				+++			++++		+++	++++		+++	+++	
HDL cholesterol	Liver	5.7																	0			
HDL cholesterol	Liver	3.9																	0			
Metabolite levels	Liver	3.9	+++++				┨┼╘┢╸	┟┼┼╟						++++	++++			++++	0	+++		
Primary biliary cirrhosis	Lymph	6.7																				
Nean corpuscular volume	Leuk Mnovt	4.7																				
Ulcerative colitis	Mncyt	6.3																				
Pre-eclampsia	Bone	4.5																				

Linking traits to their relevant cell/tissue types

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

LETTER

OPEN doi:10.1038/nature14252

Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease

Elizabeta Gjoneska^{1,2}*, Andreas R. Pfenning^{2,3}*, Hansruedi Mathys¹, Gerald Quon^{2,3}, Anshul Kundaje^{2,3,4}, Li-Huei Tsai^{1,2}§ & Manolis Kellis^{2,3}§

Immune activation + neural repression in human + mouse

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G., Kundaje, A., Tsai, L., & Kellis, M. (2015). "Conserved Epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease." Nature, 518 (7539), 365-369. doi:10.1038/nature14252

Sample mouse brain epigenomics during neurodegeneration

Two contrasting signatures of immune activation vs. neural repression

Genetic evidence for immune vs. neuronal components

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Gjoneska, E., Pfenning, A. R., Mathys, H., Quon, G., Kundaje, A., Tsai, L., & Kellis, M. (2015). "Conserved Epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease." Nature, 518(7539), 365-369. doi:10.1038/nature14252

Only increasing (immune) enhancers enriched in AD-associated SNPs

Neuronal cell types are depleted for AD-associated SNPs

Indicates immune cell dysregulation is <u>causal</u> component Microglial cells: resident immune cells of adult brain Macrophages: infiltrate brain in neurodegeneration

Using epigenomic annotations for fine-mapping disease regions

pA = 0.8, pa = 0.2, pB = 0.75, pb = 0.25

Observation: LD blocks in which there is no evidence for historical recombination

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Causal variant not known in most GWAS regions

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Smemo, S., Tena, J. J., Kim, K., Gamazon, E. R., Sakabe, N. J., Gómez-Marín, C., . . . Nóbrega, M. A. (2014). "Obesity-associated variants within FTO form long-range functional connections with IRX3." Nature, 507(7492), 371-375. doi:10.1038/nature13138

LD (Linkage disequilibrium): large regions co-inherited in blocks Blessing for initial mapping (few tags), curse for fine-mapping

Use functional annotations to predict causal variant(s)

Multiple lines of evidence for fine-mapping

Courtesy of Macmillan Publishers Limited. Used with permission. Ward, L. D., & Kellis, M. (2012). Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.

Ward and Kellis, Nature Biotechnology 2012

- Epigenomic information: enhancers & linking (target genes)
- Motif information: causal variants & upstream regulators
- Evolutionary conservation: causal variants & conserved motifs

Detect SNPs that disrupt conserved regulatory motifs

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Lindblad-Toh, Kerstin, Manuel Garber, Or Zuk, Michael F. Lin, Brian J. Parker, Stefan Washietl, Pouya Kheradpour, et al. "A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals." *Nah fY* 478, no. 7370 (2011): 476–82.doi:10.1038/nature10530.

Functionally-associated SNPs enriched in states, constraint₃₄

Allele-specific chromatin marks: cis-vs-trans effects

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Maternal and paternal GM12878 genomes sequenced
- Map reads to phased genome, handle SNPs indels
- Correlate activity changes with sequence differences

Predict effect of common, rare, somatic mutations

Common: allelic activity in heterozygous lines

				22.RAN PC-3 PMIRIE PMIRIE	BROAT TREES
2010 C C C 7 20 C C	chr20-00277170	AIC P			•
(M155386) (M155387)	chr20:09277170	A/C P		DNase	
(M155388)	chr20:09277170	A/C P	4 .	• H3K27ac • H3K27ma3	
(M155389)	chr20:09277352	G/T PO	94	• H3K36me3	
(M155391)	chr20:09295680	G/A PO	0	H3K4me1	
(M155490)	chr20:10439700	A/G P	94 📃 🗖	H3K4me3	
(M155491)	chr20:10440971	G/T P	3		
(M156297)	chr20:18542937	C/T P	0		1
(M157392)	chr20:30058480	C/T P	5		
(M157393)	chr20:30058501	C/T P4	8		
(M157394)	chr20:30058779	T/C P	05		
(M157395)	chr20:30059087	C/T P	25		
	chr20:30059145	GC/CT P4	9		
(M157397)	chr20:30059189	C/T P	3		
(M157398)	chr20:30059228	C/T P	3		

All: Regulatory and epigenomic annotations

Rare/somatic: Predict TF binding disruption

Richard Sallari Xinchen Wang
HaploReg: public resource for dissecting GWAS

Query SNP: rs468484	and variants	with r ²	>= 0.8
---------------------	--------------	---------------------	--------

pos (hg19)	pos (hg38)	LD (r²)	LD (D')	variant	Ref	Alt	AFR freq	AMR freq	A SN freq	EUR freg	SiPhy cons	Promoter histone marks	Enhancer histone marks	5	DNAse	Proteins bound	eQTL tissues	Motifs changed	Drivers disrupted	GENCODE genes	dbSNP func annot
chr3:12329783	chr3:12288284	0.95	0.97	rs17036160	с	т	0.01	0.06	0.04	0.12		24 organs	7 organs		4 organs			4 altered motifs		PPARG	intronic
chr3:12336507	chr3:12295008	0.95	0.97	rs11709077	G	А	0.01	0.07	0.04	0.12		LNG	9 organs		15 organs	i		4 altered motifs		PPARG	intronic
chr3:12344730	chr3:12303231	0.94	0.97	rs11712037	С	G	0.01	0.08	0.04	0.12			6 organs		BLD	i		AP-1,TCF11::MafG		PPARG	intronic
chr3:12351521	chr3:12310022	0.95	0.97	rs35000407	т	G	0.01	0.07	0.04	0.12		LNG	5 organs			_		Smad		PPARG	intronic
chr3:12360884	chr3:12319385	0.95	0.97	rs150732434	ΤG	т	0.01	0.07	0.04	0.12		FAT	7 organs		MUS,VAS	CFOS		Hdx,Sox,TATA		PPARG	intronic
chr3:12365308	chr3:12323809	0.95	0.97	rs13083375	G	т	0.01	0.07	0.04	0.12		BLD	BLD, FAT					Homez,Sox,YY1		PPARG	intronic
chr3:12369401	chr3:12327902	0.95	0.97	rs13064760	С	Т	0.01	0.07	0.04	0.12			7 organs					9 altered motifs		PPARG	intronic
chr3:12375956	chr3:12334457	0.95	0.97	rs2012444	С	т	0.01	0.07	0.04	0.12			SKIN, FAT, BLU	.D				7 altered motifs		PPARG	intronic
chr3:12383265	chr3:12341766	0.96	0.99	rs13085211	G	Α	0.18	0.10	0.04	0.12			FAT, SKIN					NRSF		PPARG	intronic
chr3:12383714	chr3:12342215	0.96	0.99	rs7638903	G	А	0.18	0.10	0.04	0.12			6 organs		CRVX					PPARG	intronic
chr3:12385828	chr3:12344329	0.95	1	rs11128603	Α	G	0.18	0.10	0.04	0.12			CRVX					RXRA		PPARG	intronic
chr3:12386337	chr3:12344838	1	1	rs4684847	С	Т	0.01	0.07	0.04	0.12			6 organs							PPARG	intronic
chr3:12388409	chr3:12346910	0.99	1	<u>rs7610055</u>	G	А	0.17	0.09	0.04	0.12			BLD					4 altered motifs	L,	PPARG	intronic
chr3:12389313	chr3:12347814	0.99	1	rs17036326	А	G	0.17	0.09	0.04	0.12			FAT, BL Adipos	se_De	rived_Mesenchyn	nal_Stem_Cell_Cultur	ed_Cells,	CD4+_CD25IL17+_PMA-		PPARG	intronic
chr3:12390484	chr3:12348985	0.99	1	rs17036328	т	С	0.17	0.09	0.04	0.12			FAT, CR Ionom	ncyin_	stimulated_Th17_	Primary_Cells, Muscl	e_Satellite	_Cultured_Cells,		PPARG	intronic
chr3:12391207	chr3:12349708	0.99	1	rs6802898	С	Т	0.61	0.15	0.04	0.12			FAT, BL Penis	_Fores	skin_Fibroblast_Pr	imary_Cells_skin01,				PPARG	intronic
chr3:12391583	chr3:12350084	0.99	1	rs2197423	G	А	0.17	0.09	0.04	0.12		FAT, LIV	8 organ: Penis_	_Fores	skin_Fibroblast_Pr	imary_Cells_skin02,	_			PPARG	intronic
chr3:12391813	chr3:12350314	0.99	1	rs7647481	G	А	0.17	0.09	0.04	0.12		4 organs	9 organ: Penis	_Fores	skin_Keratinocyte	_Primary_Cells_skin0	2,			PPARG	intronic
chr3:12392272	chr3:12350773	0.99	1	rs7649970	С	Т	0.17	0.09	0.04	0.12		5 organs	9 organ Penis	_Fores	skin_keratinocyte	_Primary_Cells_skinu	3, Convicel C	arciana		PPARG	intronic
chr3:12393125	chr3:12351626	1	1	rs1801282	С	G	0.01	0.07	0.04	0.12		FAT, LIV	9 organ: NHEK	_ELUH	r_0.02pct_tung_c	arunoma, neca-55_	cervical_c	arcinoma,		PPARG	missense
chr3:12393682	chr3:12352183	0.99	1	rs17036342	А	G	0.17	0.09	0.04	0.12		FAT	9 organ		inal_keraunocya					PPARG	intronic
chr3:12394840	chr3:12353341	0.99	1	rs1899951	С	т	0.61	0.15	0.04	0.12		FAT	9 organs					Mef2		PPARG	intronic
chr3:12395645	chr3:12354146	0.99	1	rs4684848	G	Α	0.61	0.15	0.04	0.12		FAT, BLD	9 organs		ADRL,GI,CRVX	5 bound proteins				PPARG	intronic
chr3:12396845	chr3:12355346	0.93	1	rs4135250	А	G	0.17	0.09	0.04	0.13			4 organs		PLCNT					PPARG	intronic
chr3:12396913	chr3:12355414	0.98	1	<u>rs71304101</u>	G	Α	0.01	0.07	0.04	0.12			4 organs		PLCNT			Crx,NF-E2		PPARG	intronic
chr3:12396955	chr3:12355456	0.96	1	rs2881654	G	Α	0.61	0.15	0.04	0.12			4 organs					7 altered motifs		PPARG	intronic

Courtesy of the authors. License: CC BY-NC. Source: Ward, Lucas D. and Manolis Kellis. "HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants." Nucleic Acids Research 40, no. D1 (2012): D930-D934.

- Start with any list of SNPs or select a GWA study ۲
 - Mine ENCODE and Roadmap epigenomics data for hits
 - Hundreds of assays, dozens of cells, conservation, motifs _
 - Report significant overlaps and link to info/browser
- Try it out: http://compbio.mit.edu/HaploReg

Ward, Kellis NAR 2011

Predicting target genes

Three lines of linking evidence

Physical

Functional Genetic Tissue 1 Tissue 2 ases Tissue 3 Tissue 4 Tissue 5 Tissue 6 Enhancer histone marks Controls Promoter histone marks Transcribed region marks C Enhancer-gene links Genetic association Genetic associatio with organismal trait with molecular trait Chromatin state annotations (GWAS) (e.g., eQTL)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/ faq-fair-use/. Courtesy of Macmillan Publishers Limited. Used with permission. Ward, L. D., & Kellis, M. (2012). Interpreting noncoding genetic variation in complex traits and human disease. Nat Biotechnol Nature Biotechnology, 30(11), 1095-1106. doi:10.1038/nbt.2422. Used with permission.

Hi-C: Physical proximity in 3D Enhancer-gene activity correlation

eQTL evidence: SNP effect on expression

Targets: 3D folding and expr. genetics indicate IRX3+IRX5

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dixon, Nature 2012

Topological domains span 2.5Mb Implicate **8 candidate genes**

Cohort of **20 homozygous risk** and **18 homozygous non-risk** individuals: Genotype-dependent expression?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

eQTL targets: IRX3 and IRX5

Risk allele: increased expression (gain-of-function)

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Interpreting disease-association signals

(1) Interpret variants using Epigenomics

- Chromatin states: Enhancers, promoters, motifs
- Enrichment in individual loci, across 1000s of SNPs in T1D

(2) Epigenome changes in disease

- Intermediate molecular phenotypes associated with disease

- Variation in brain methylomes of Alzheimer's patients

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Molecular Epidemiology

Molecular Biomarkers of disease state:

Gene expression, DNA methylation, chromatin in specific cell types

Genetic and epigenetic data in 750 Alzheimer's patients/controls

750 subjects, initially cognitively normal, Alzheimer's diagnosed by pathology. (Bennett) ⁴⁵

Data Matrices – An example scenario

Excluding discovered and known covariates

Infer covariates using ICA, compare to known, exclude both.

Strongest effects:

- Plate (batch)
- Cell mixture
- Bisulfite conversion
- Gender
- Age

Variance explained:

- Known: 25%
- Inferred: 35%
- Together: 40%

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Genotype→Methylation

Discovering mQTLs Methylation Quantitative Trait Loci

cis-meQTLs

Use linear models to identify *cis*-meQTLs w/in some genomic window.

For methyl mark m_i and SNP g_j : $m_i = \beta 0 + \beta 1(g_j) + \epsilon$

- Given several predictors: is additional predictor increasing accuracy more than complexity introduced?
- Likelihood ratio testing paradigm: predict methylation with and without genotype (only works for nested models)
- Null hypothesis H_0 : β 1=0: Additional model complexity doesn't explain a significant portion of variation in response

Test using F statistic:

- p is the number of parameters in LM1
- q is the number of parameters in LM2
- n is the sample size
- RSS: Residual sum of squares
- β : parameters to learn. ϵ : residual error term.

Under null hypothesis: ($({\rm RSS}_{\rm LM1} - {\rm RSS}_{\rm LM2})$ / (q-p)) / (${\rm RSS}_{\rm LM2}$ / (n-q))

Is distributed as F distribution with (q-p, n-q) degrees of freedom

- → If F statistic significant: reject null: This p-value is what we report in a meQTL study
- → Otherwise, no meQTL: i.e. $RSS_{LM1} RSS_{LM2}$ too small vs. increase in model complexity

LM1: $m_i = \beta 0 + \epsilon$ LM2: $m_i = \beta 0 + \beta 1(g_j) + \epsilon$

cis-meQTLs

Alternative methods of detection:

- Permutation:
 - Correlate methylation and genotype.
 - For i in 1 -> nperm:
 - Permute genotypes
 - Correlate methylation and genotype
 - Generate empirical p-value from permuted correlations
- LMM: Linear mixed models.

Most epigenomic variability is genotype-driven Manhattan plot of 450,000 methylation probes

- Genome-wide significance at p<3x10⁻¹⁰
- Prune for probes disrupted by SNP.
- ➔ 140,000 CpGs associated with genotype at 1% FDR
- → 55,000 at Bonferroni-corrected P-value of 10⁻²

Scaling of discovery power with individuals

[©] source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Number of meQTLs continues to increase linearly
- Weak-effect meQTLs: median R²<0.1 after 400 indiv.

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Methylation→Disease

EWAS

Epigenome-wide association study

Link methylation⇔phenotype (~cis-eQTLs):

- linear models and hypothesis testing
- Predict phenotype using methylation

LM1: $p_i = \beta 0 + \epsilon$ LM2: $p_i = \beta 0 + \beta 1(m_i) + \epsilon$

LM2: AD = β 0 + β 1(m_i) + β 2(gender) ϵ

Link methylation⇔phenotype (~cis-eQTLs):

- linear models and hypothesis testing
- Predict phenotype using methylation

Problem:

variance due to phenotype probably very
small (unless your phenotype is cancer)
→ Needle in a haystack

Control for other sources of variance to make the variance due to the phenotype stand out.

If phenotype is Alzheimer's (AD), gender incorporates more variance into your M matrix than does AD.

Might have many environmental variables to control for.

LM1: AD = β 0 + β 2(gender) + β 3(age) + β 4(education) + ... + ϵ LM2: AD = β 0 + β 1(m_i) + β 2(gender) + β 3(age) + β 4(education) + ... + ϵ

Need to account for variance due to genotype as well.

Role of enhancers vs. promoters in Alzheimer's disease association

Enhancers are hemi-methylated and highly variable

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Highly distinct signatures for promoters vs. enhancers
- Enhancers hemi-methylated in each person (not bimodal)

Methylation level Methylation level

SNP-associated CpGs in enhancers, not promoters

- Promoter methylation less affected by genetics
- Enhancer methylation highly genotype-driven
- TSS-flanking and repressed regions also genetic

AD-associated probes in distal enhancers

RR using Permuted Expectation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- After cleaning with known and inferred covariates.
- Distal and transcribed enhancers enriched.
- Proximal regulators (promoters) depleted.

ICA covariate correction cleans up enhancer signal

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

AD predictive power highest in enhancers

Top predictive features are:

- Enhancer methylation
- All methyl.
- TSS, Het
- Genetics (incl. APOE)
- Causality?
- Common pathways?

[©] source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

AD prediction reveals likely biological pathways

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Enriched regulatory motifs

HEB/Tcf12: proliferating neural and progenitor cells GATA: cell growth, blood, cell development TLX1/NFIC: Neuronal cell fates Mouse AD models 66

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Risk factor causality w/ instrumental variables

- Is risk factor X causing disease Y (or a consequence)?
 - E.g. alcohol addiction, smoking, blood cholesterol, fever, stress
 - → Randomized experiment, with and without X: feasibility? ethics?
- G ⇔ randomized experiment (e.g. random Mendelian inheritance), as only some subjects have genotype
- G (i.v.)must be correlated with Y but only through X
 i.e. if X known, G gives no additional information about Y

In silico thought experiment

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Hemi-methylation associated with meQTL yields a p-value that's 30 orders of magnitude lower for the AD phenotype.

Mendelian randomization approach

Account for variance due to genotype, how much does methylation add?

Causality testing

Modeling complex Human diseases

- Three possible models:
 - 1. Independent Associations

2. Causal Pathway Model

3. Interaction Model

G GenotypeM MethylationD Disease

(1) Independent Associations

- Association between Factor A and Disease
- Association between Factor B and Disease
- No association between Factor A and Factor B
- Example: 2 independent risk genes

(2) Causal Pathway Models

• Is the a direct link between risk factor (A) and disease (D)?

Does the risk factor's (A) effect on disease (D) depend on an intermediate step (B)?

- To test:
 - A is associated with B and D
 - B is associated with D
 - A is not associated with D when controlling for B
 - Note: A MUST come before B temporally

(2) Causal Pathway Models

 In reality its a little of both. A's affect on D is partially mediated through B

- To test:
 - A is associated with B and D
 - B is associated with D
 - The effect size of A on D is decreased when controlling for B
 - Note: A MUST come before B temporally
- Example: *CR1* effect on cognitive decline

(3) Interaction Models

• Factor B's effect on D is different depending on value for factor A

- To test:
 - − A + B + A*B \rightarrow D, if estimate for A*B is significant then
 - Stratify by levels of A
- Example:
 - A drug's effect is different depending on genotype
 - More to come...

Application to 12 AD GWAS loci

Gene	locus	reference	Published AD	AD	NP
ABCA7	rs3764650	Hollingsworth 2010	5.0x10 ⁻²¹	0.747	0.187
APOE	Any ε4			1.2x10 ⁻¹³	1.8x10 ⁻²³
BIN1	rs744373	Seshadri 2010	1.6x10 ⁻¹¹	0.204	0.480
CD2AP	rs9349407	Naj 2011/Hollingsworth 2011	8.6x10 ⁻⁹	0.445	0.221
CD33	rs3865444	Naj 2011/Hollingsworth 2012	1.6x10 ⁻⁹	0.133	0.123
CLU	rs11136000	Lambert 2009/Harold 2009	7.5x10 ⁻⁹	0.762	0.649
CR1	rs6656401	Lambert 2009	3.7x10 ⁻⁹	0.0009	0.057
EPHA1	rs11767557	Naj 2011/Hollingsworth 2011	6.0x10 ⁻¹⁰	0.562	0.391
MS4A4A	rs4938933	Naj 2011	1.7x10 ⁻⁹	0.792	0.567
MS4A6A	rs610932	Hollingsworth 2010	1.2x10 ⁻¹⁶	0.534	0.820
MTHFD1L	rs11754661	Naj 2010	1.9x10 ⁻¹⁰	0.126	0.934
PICALM	rs3851179	Harold 2009	1.9x10 ⁻⁸	0.382	0.171

CR1: Causal pathway model

- *CR1* first associated with AD in 2009
- Original associated variant is in an intron, no clear function
- Unclear how CR1 locus influences AD susceptibility mechanistically
- Questions:
 - Is the effect only on AD?
 - Is there a broader effect on cognitive decline?
 - Is there an association with AD pathology?
 - Does it go through pathology to have an effect of cognitive decline?

CR1 (rs6656401)

Genetic + Epigenetic variation in Alzheimer's

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Methylation variation in 723 AD patients & controls

Methylation >> SNPs Enhancers >> promoters

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Relate to genotype and AD variation

$$G \rightarrow M \rightarrow D$$
$$G \rightarrow M \leftarrow D$$
$$G \rightarrow D$$
$$\downarrow M$$

Estimate causal M roles: regression of meQTL effects reduces M⇔D

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

Beyond top-scoring hits: 1000s of variants of weak effect cluster in cell type specific enhancers

Rank-based functional testing of weak associations

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Rank all SNPs based on GWAS signal strength
- Functional enrichment for cell types and states

Weak-effect T1D hits in 50k T-cell enhancers

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

LD-pruning (CEU r²>.2): 50k → 41k independ. loci

Cell type specificity stronger for enhancers

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- T/B-cells also enriched for promoters, transcribed
- Enhancer enrichment much more cell type specific.

T1D/RA-enriched enhancers spread across genome

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw. mit.edu/help/faq-fair-use/.

- High concentration of loci in MHC, high overlap
- Yet: many distinct regions, 1000s of distinct loci

Implications for genetic predisposition: polygenic models for risk prediction

Basic setup of polygenic risk prediction studies

- Applications 1 (testing cohort)
 - Understand total heritability captured in common variants
 - Understand disease "architecture": number of SNPs
 - Recognize functional classes associated with weak genetic associations
- Applications 2 (new individuals)
 - Provide health recommendations at the individual level
 - Prioritize high-risk individuals for subsequent testing at population level

How many SNPs to include in model?

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- It depends on:
 - Architecture: Fraction of SNPs that are estimated to be functional
 - Power: Number of individuals in cohort, i.e. ability to rank correctly
- It only peaks at 5% (≈ 1 -pi0) when sufficient power to rank
 - Large fraction of associated markers are hidden within non-significant SNPs
- For pi0=0.90, still need to include all SNPs to maximize predictive power

Application to pleiotropy and common risk

- Ability to assess common genetic risk
 - Are the highly-ranked SNPs for one study relevant to a different study?
 - Is there a shared genetic architecture between seemingly unrelated traits?
- First use showed schizophrenia and bipolar disorder common risk
 - Schizophrenia-ranked SNPs in one cohort...
 - ... are predictive of bipolar disorder diagnosis
 - ... but not predictive of unrelated (cardiovascular) traits

Important points/caveats for risk prediction

- Always limited by genetic component
 - Environment, random effects play big role for most traits
- Mendelian=deterministic vs. common variants=prob.ic
 - Only a first screen for individuals at risk
- Limited by discovery power
 - Cohort size limits discriminative power and ranking ability
- Limited by genotyped SNPvs vs. all SNPs
 - Selection pushes fitness-reducing variants to lower freq
 - Genotyped SNPs selected to be common
- Even if SNPs are correctly identified, their effects are not
 Winner's curse: over-estimate above-threshold true effect
- Training and testing cohort non-independence
 - Relatives, cryptic relatedness, population stratification inflate est.

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

This talk: From loci to mechanisms

Building a reference map of the regulatory genome

Application to GWAS, hidden heritability, and Cancer

GWAS hits	CATGCCTG CGTGTCTA	 • 93% top hits non-coding → Mechanism? Cell type? • Lie in haplotype blocks → Causal variant(s)?
'Hidden' heritability	CATGCCTG CGTGTCTA	 Many variants, small effects → Pathway-level burden/load Many false positives → Prioritize w/ regulatory annotations
Cancer mutations	CATGCCTG CAT <mark>C</mark> CCTG	 Loss of function → Protein-coding variants, convergence Gain of function → Regulatory variants, heterogeneity

Characterizing sub-threshold variants in heart arrhythmia

: fca `5f_]b[ž`8"`9"ž`Di `]hž`G"`@"ž`7fchh]ž`@"ž`<Ufghž`D"`J "ž`A i bfcYž`D"`6"ž ?ccda Ubbž`H"`H"ž`"`"`BYk hcb!7\Y\ž`7"`f&\$%(Ł"`; YbYh]WUggcV]Uh]cb ghi XmcZEH`]bhYfj U``\][\`][\hg`fc`Y`Zcf`VU`V]i a `a mcWUfX]U``fYdc`Uf]nUh]cb" BUhi fY`; YbYh]Vhj`BUh`; YbYhž`(*fl Łž`, &*!, '*"`I gYX`k]h\`dYfa]gg]cb"

Trait: QRS/QT interval

(1) Large cohorts, (2) many known hits(3) well-characterized tissue drivers

Enhancers overlapping GWAS loci share functional properties

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Train machine learning model to prioritize sub-threshold loci

Functional evidence for sub-threshold target genes

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Mouse phenotypes

Experimental validation of 11 sub-threshold loci

	Lead SNP	p-value	Enhancer	1. Luciferase reporter	2. 4C-seq interactions
	rs1886512	4.30x10 ⁻⁸	chr13:74,520,000-74,520,400	0.015	No interactions
	rs1044503	5.13x10 ⁻⁷	chr14:102,965,400-102,972,000	4.70x10 ⁻⁹	CINP, RCOR1
rs10030238	rc10020229	C 04×40-7	chr4:141,807,800-141,809,600	1.35x10 ⁻¹⁴	RNF150
	0.21110	chr4:141,900,800-141,908,000	-	RNF150	
	rs6565060	1.52x10 ⁻⁵	chr16:82,746,400-82,750,800	5.00x10 ⁻³	No interactions
	rs3772570	1.73x10 ⁻⁵	chr3:148,733,200-148,738,600	0.67	-
	rs3734637	2.23x10 ⁻⁵	chr6:126,081,200-126,081,800	1.06x10 ⁻⁴	HDDC2
rs1743292	rc1742202	C 40x40-5	chr6:105,706,600-105,710,200	3.20x10 ⁻⁴	BVES, POPDC3
	0.40110	chr6:105,720,200-105,723,000	-	BVES, POPDC3	
	rs11263841	6.87x10 ⁻⁵	chr1:35,307,600-35,312,200	0.22	GJA4, DLGAP3
	rs11119843	7.14x10 ⁻⁵	chr1:212,247,600-212,248,600	0.031	-
	rc6750400	7 27 10-5	chr2:11,559,600-11,563,000	0.54	DOCKA
15675	150700499	1.373103	(split into two 2kb fragments)	3.26x10 ⁻⁷	RUGKZ
	rs17779853	7.73x10 ⁻⁵	chr17:30,063,800-30,066,800	4.33x10 ⁻³	No interactions

 $\ensuremath{\mathbb{C}}$ source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

9 of 11 tested loci show allelic activity, chromatin interactions

Functional evidence for rs1743292 causality (P=10-4.2)

Enhancer 4C links to target gene promoters

Motif disruption Allelic DNase in multiple individuals

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Allelic enhancer activity³⁸

p=3.2x10⁻⁴

Pret Lin III

Heart enhancer activity

Target gene impact on heart conduction

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Detection and validation of a new cardiac locus

What would we need to discover rs1743292 without epigenomics?

rs1743292

Minor allele frequency: 0.134 Effect size: -0.5773 +/- 0.17 msec With 68,900 individuals: 12.8% power to discover at p<5x10⁻⁸

- rs1743292 has similar effect sizes as many genome-wide significant variants
- Many GWAS variants discovered due to winner's curse: often only have 5-20% power to discover
- Combining epigenomics and GWAS can:
 - 1. Confirm existing GWAS loci are real
 - 2. Discover new sub-threshold loci with weak effect sizes, low power

To reach 80% power to discover rs1743292 at p<5x10⁻⁸, we need **146,700** individuals!

Goal: Personalized and Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

This talk: From loci to mechanisms

Building a reference map of the regulatory genome

Application to GWAS, hidden heritability, and Cancer

GWAS hits	CATGCCTG C <mark>G</mark> TGTCTA	 • 93% top hits non-coding → Mechanism? Cell type? • Lie in haplotype blocks → Causal variant(s)?
'Hidden' heritability	CATGCCTG CGTGTCTA	 Many variants, small effects → Pathway-level burden/load Many false positives → Prioritize w/ regulatory annotations
Cancer mutations	CATGCCTG CAT <mark>C</mark> CCTG	 Loss of function → Protein-coding variants, convergence Gain of function → Regulatory variants, heterogeneity

Regulatory convergence of dispersed driver mutations

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Common mutations in regulatory plexus of each gene Richard Sallari

103

Cancer genes are more likely to be up-regulated

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Richard Sallari 104

Dysregulated genes show dispersed non-coding mutations

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dysregulated genes are enriched for plexus mutations at all distances. Richard Sallari 105

Non-coding mutations enriched in promoters / enhancers active in other cell types

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Disruptive mutations in 'low' elements are enriched in enhancers and promoters in other tissues Richard Sallari 106

Statistical model for excess of rare/somatic variants

•Correct for region-, state-, tumor-specific rate variation

Convergence in immune, signaling, mitoch. functions

		Enriched chromatin state					All regulatory chromatin states					Panel ConvGrp		rpl	
Gene	State	P-val.	Conv	N elmts	kb	Nchr	Nmuts	Conv	N elmts	kb	Nchr	Nmuts		Gene function	53
ITM2A	enh	1E-07	56%	245	181	20	58	87%	793	483	20	129	182	immun-evas	(2)
INSRR	poi	2E-07	62%	142	99	18	76	100%	2727	1756	23	267	(b)	ins-androgen	(1)
ZCCHC16	txn	3E-07	60%	193	251	22	63	98%	2138	1347	23	275		unknown	N/A
ZBED2	pro	9E-07	71%	331	176	21	72	100%	4173	2771	23	421	(e)	immun-evas	(2)
SPANXN3	pro	1E-06	35%	76	37	14	24	85%	1047	710	22	124		spermatogen	(1)
PLCB4	txn	2E-06	67%	341	419	23	79	98%	3576	2497	23	362		ins-androgen	(1)
COQ3	pro	2E-06	64%	247	125	20	58	100%	2913	1957	23	326		mitochondr	(3)
EDNRA	txn	2E-06	75%	452	586	19	102	100%	4238	2734	23	392		blood flow	N/A
CRY2	txn	3E-06	65%	358	455	21	83	100%	3569	2376	23	289	(f)	ins-androgen	(1)
ZC3H12B	rep	3E-06	89%	576	505	22	150	100%	2661	1754	23	415	(g)	immun-evas	(2)
C14orf180	txn	4E-06	51%	133	161	19	49	93%	1700	1243	23	142		secreted	N/A
IDO2	rep	4E-06	87%	378	368	20	98	98%	1525	1058	21	189		immun-evas	(2)
RRAD	poi	4E-06	51%	113	72	20	47	95%	2091	1430	22	180		ins-androgen	(1)
SLC25A5	rep	4E-06	67%	196	189	18	68	91%	1332	853	21	143	(d)	mitochondr	(3)
SSX3	enh	4E-06	65%	230	196	20	53	78%	682	468	21	104	(c)	spermatogen	(1)

INSRR

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

e

• Pathway-level convergence, hierarchical model
Non-coding drivers of prostate cancer dysregulation

	Enriched chromatin state								All regulatory chromatin states					Panel ConvGrp	
Gene	State	P-val.	Conv	N elmts	kb	Nchr	Nmuts	Conv	N elmts	kb	Nchr	Nmuts		Gene function	2
ITM2A	enh	1E-07	56%	245	181	20	58	87%	793	483	20	129		immun-evas	(2)
INSRR	poi	2E-07	62%	142	99	18	76	100%	2727	1756	23	267	(b)	ins-androgen	(1)
ZCCHC16	txn	3E-07	60%	193	251	22	63	98%	2138	1347	23	275		unknown	N/A
ZBED2	pro	9E-07	71%	331	176	21	72	100%	4173	2771	23	421	(e)	immun-evas	(2)
SPANXN3	pro	1E-06	35%	76	37	14	24	85%	1047	710	22	124	106-0	spermatogen	(1)
PLCB4	txn	2E-06	67%	341	419	23	79	98%	3576	2497	23	362		ins-androgen	(1)
COQ3	pro	2E-06	64%	247	125	20	58	100%	2913	1957	23	326		mitochondr	(3)
EDNRA	txn	2E-06	75%	452	586	19	102	100%	4238	2734	23	392		blood flow	N/A
CRY2	txn	3E-06	65%	358	455	21	83	100%	3569	2376	23	289	(f)	ins-androgen	(1)
ZC3H12B	rep	3E-06	89%	576	505	22	150	100%	2661	1754	23	415	(g)	immun-evas	(2)
C14orf180	txn	4E-06	51%	133	161	19	49	93%	1700	1243	23	142		secreted	N/A
IDO2	rep	4E-06	87%	378	368	20	98	98%	1525	1058	21	189		immun-evas	(2)
RRAD	poi	4E-06	51%	113	72	20	47	95%	2091	1430	22	180		ins-androgen	(1)
SLC25A5	rep	4E-06	67%	196	189	18	68	91%	1332	853	21	143	(d)	mitochondr	(3)
SSX3	enh	4E-06	65%	230	196	20	53	78%	682	468	21	104	(c)	spermatogen	(1)
- Anne			-		5			e		f				g	
INSRR	SSX	SSX3			SLC25A5			ZBED2 C			and all the	ZC3H12B			

Regulatory mutations reveal new cancer driver genes

Convergence in immune, signaling,

mitochondrial functions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Convergence in inositol phosphate metabolism adjacent to PTEN, PIK3CA, known cancer genes

PLCB4 overexpression in PC3 prostate cancer reduces Erk/Akt activity, synergistic with PTEN

Personal genomics tomorrow: Already 100,000s of complete genomes

- Health, disease, quantitative traits:
 - − Genomics regions → disease mechanism, drug targets

 - − Single genes → systems, gene interactions, pathways
- Human ancestry:
 - Resolve all of human ancestral relationships
 - Complete history of all migrations, selective events
 - Resolve common inheritance vs. trait association
- What's missing is the computation
 - New algorithms, machine learning, dimensionality reduction
 - Individualized treatment from 1000s genes, genome
 - Understand missing heritability
 - Reveal co-evolution between genes/elements
 - Correct for modulating effects in GWAS

Challenge ahead: From research to clinic

- 1. Systematic medical genotyping / sequencing
 - Currently a curiosity, future: medical practice
- 2. Systematic medical molecular profiling
 - Functional genomics in relevant cell types
- 3. Systematic perturbation studies for validation
 - 1000s of regulatory predictions x 100s cell types
- 4. Systematic repurposing of approved drugs
 - Systems-biology view of drug response
- 5. Genomics of drug response in clinical trials
 - Personalized drug prescription and combinations
- 6. Partnerships: academia, industry, hospitals
 - Interdisciplinary training in each of the instituttions

Summary: Personalized & Predictive Medicine

- 1. Intro to Epidemiology: basis of human disease
- 2. Genetic Epidemiology:
 - Genetic basis: GWAS and screening
 - Interpreting GWAS with functional genomics
 - Calculating functional enrichments for GWAS loci
- 3. Molecular epidemiology
 - meQTLs: Genotype-Epigenome association (cis-/trans-)
 - EWAS: Epigenome-Disease association
- 4. Resolving Causality
 - Statistical: Mendelian Randomization
 - Application to genotype + methylation in AD
- 5. Systems Genomics and Epigenomics of disease
 - Beyond single loci: polygenic risk prediction models
 - Sub-threshold loci and somatic heterogeneity in cancer

6.047 / 6.878 / HST.507 Computational Biology Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.