Computational Biology: Genomes, Networks, Evolution 6.047/6.878 Lecture 09

Regulatory networks: Inference, Analysis and Applications Soheil Feizi

The multi-layered organization of information in living systems

Biological networks at all cellular levels

Five major types of biological networks

Network definitions: structural, probabilistic

• Two types of binary graphs: directed/undirected networks

- Graph theory: Nodes, edges, weights, paths
- Probabilistically: Bayesian Networks
 - A model to represent "dependencies" among variables
 - Unconnected nodes are conditionally independent
- Linear algebra: Matrices, powers, decomposition

Network applications and challenges

Goals for today: Network analysis

- 1. Introduction to networks
- 2. Applications of regulatory networks
 - Predicting expression of target genes: graphical models, linear regression and regression trees
 - Predicting functions of un-annotated genes, guilt by association
- 3. Inferring "structure" of regulatory networks
 - Likelihood approach, challenges
 - Simplified approaches and their problems
 - Integrated approaches
- 4. Structural properties of regulatory networks
 - Scale free degree distribution
 - Network motifs

8

Spectral clustering and modular networks

Applications of regulatory networks

- Predicting expression of targets from expression of regulators
- Predicting function of un-annotated genes based on co-expression and co-regulation

Gene expression prediction

Very large number of regulators / targets

- Regulatory

 network limits the
 number of
 possible
 hypotheses
- Only directly related elements are connected
- Assume other pairs of nodes are conditionally independent

Graphs represent variable dependencies

- X₁ and X₂ are dependent.
- X₂ and X₃ are dependent.
- X₁ and X₃ are *conditionally* independent
 - If we know the value of X₂, they are independent
 - But if the value of X₂ is *not* known, then:

1. Observing (or estimating) value of X1

2. ... can influence our estimate of the value of X2...

3. ... which in turn can influence our estimate of value of X3

→ Some information does flow $X_1 \rightarrow X_3$ through X_2 : Dependent!

 X_1 and X_3 are independent <u>**given**</u> X_2 : $X_1 \perp \perp X_3 | X_2$

Probability tables vs. graphical models

- Equations
- Network

Network structure -> sets of ind. variables

 $X_{S_1} \perp \!\!\!\perp X_{S_3} | X_{S_2}$

- Variables S₁={...} and S₃={...} are <u>conditionally</u>
 <u>independent</u> given S₂, if they become disconnected by removing S₂
- Graphical models represent "structure" of joint probability distribution: reason about <u>graph</u>, instead of reasoning about <u>probability tables</u>

Directed graphs -> Asymetry of conditional ind

• Parent nodes vs. children nodes [EXPLAIN]

Given parents: children nodes independent from

Rules for conditional independence

• Conditionally independent variables appear in separate terms

Predicting gene expression

Edge potential functions Gaussian functions Linear regression Regression trees

Types of potential functions F(.)

- General
- Exponential functions
- Gaussian functions
 - General covariance
 - Unit variance,
 only correlations ρ
 - No covariance (indpent)

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Gaussian edge potential functions (Gaussian graphical models)

- If X_1, X_2 and X_3 are jointly Gaussian with $\mu {=}0$ and $\sigma {=}1$
- \rightarrow edge potential functions simplify to correlations $\rho_{i,i}$

$$P(X_{1}|X_{3}) = \frac{P(X_{1}, X_{3})}{P(X_{3})}$$

$$= \frac{\int P(x_{1}, x_{2}, x_{3}) dx_{2}}{\int P(x_{1}, x_{2}, x_{3}) dx_{2} dx_{3}} \xrightarrow{\rho_{1,3}} x_{3} \rho_{2,3}$$

One more expansion, showing Z

 Normalization term (Z) will be canceled out!

$$P(X_1, X_2, \dots, X_n) = \frac{1}{Z} \prod_{i \in V} \phi(X_i) \prod_{(i,j) \in E} \Psi(X_i, X_j)$$

Assume linear function from regulators to target (Linear regression)

- Goal: $X_3 = f(X_1, X_2)$
- Probabilistic approach: $P(X_3|X_1, X_2)$

 Assume expression of a target is Gaussian whose mean is a linear combination of the expression level of regulators

$$P(X_3|X_1, X_2) \sim N(\alpha_1 X_1 + \alpha_2 X_2 + \alpha_0, 1)$$

• Use maximum likelihood to find parameters.

Predicting gene expressions using linear regression (combine with prev)

- Take derivatives to find optimal model parameters
- Problem of over-fitting => regularization (DETAILS on regularization functions)

Predicting expression using regression trees

Expression of target modeled using Gaussians at each leaf node

- Assumes variables are continuous. Arranges regulators in a tree
- Expression prediction follows a set of decision rules
 → Can model combinatorics
- Allows non-linear dependencies between regulators and target
- Targets can share regulatory programs

Predicting gene function

Guilt by association

Predicting functions of un-annotated genes

- Goal: Predict function of unannotated genes based on "guilt by association"
- Different types of "association"

However most approaches work with "functional networks"

Deng et al 03, Sharan et al 07

Iterative classification algorithm

- Start with an initial assignment of labels
- Repeat iteratively
 - Update relational attributes
 - Re-infer the labels

Neville 03, Getoor 05

Approaches for "network-based" function prediction

- Neighborhood counting
 - Add sentence
- Markov Random Field Structure
 - Add sentence
- Relaxation Labeling
 - Add sentence
- Collective classification
 - Add sentence
- Most approaches work with functional networks
 - Add sentence

Take away messages so far ... (combine with outline slide)

- Use graphical models to represent "dependencies" among variables
- Gene expression predictions are equivalent to finding marginal distributions

– Linear regression, regression trees

• Use network structure to predict functions of un-annotated genes

Goals for today: Network analysis

- 1. Introduction to networks
- 2. Applications of regulatory networks
 - Predicting expression of target genes: graphical models, linear regression and regression trees
 - Predicting functions of un-annotated genes, guilt by association
- 3. Inferring "structure" of regulatory networks
 - Likelihood approach, challenges
 - Simplified approaches and their problems
 - Integrated approaches
- 4. Structural properties of regulatory networks
 - Scale free degree distribution
 - Network motifs
 - Spectral clustering and modular networks

Likelihood approach to infer "network structure"

- Likelihood approach:
 - Assign a likelihood score to each structure

Structure Learning needs search

 $Score(\mathcal{G}) = Likelihood(\mathbf{X}; \mathcal{G}, \theta) = P(\mathbf{X}|\theta, \mathcal{G})$

Likelihood approach to infer network structure: challenges

- Problems:
 - Exponentially many structures!
 - Unable to discriminate between direct vs indirect links (Undistinguishable structures!)

Solution 1: Correlation-based inference methods

- Only consider structures whose "observed" edge weights are high
- Perform maximum likelihood test among fewer structures

 $\rho_{2,3} < \min(\rho_{1,2}, \rho_{1,3})$

Issues of correlation-based inference methods

- Problems:
 - Many false positive and true negative edges
 - Observed edge weights may be different than true edge weights.
 - Indirect effects and transitive edges:

Indirect information flows cause transitive edges

- Transitive edges are due to information flows over indirect paths
- ARACNE solution: Exclude edges with lowest Information in a triplet => information inequality

 $\mathsf{I}(\mathsf{X}_{2},\mathsf{X}_{3}) < \min(\mathsf{I}(\mathsf{X}_{1},\mathsf{X}_{2}),\mathsf{I}(\mathsf{X}_{1},\mathsf{X}_{3}))$

Network deconvolution!

see http://ocw.mit.edu/help/faq-fair-use/.

Integrated approach to infer regulatory networks Solution 3: Solution 1+Solution 2

 Combine inferred regulatory networks from many data types

Network integration: problem setup

- Can we simply add weights?
- Assumptions:
 - Input networks are "independent"
 - Weights represent log-likelihoods

Likelihood approach to integrate weighted networks

$$\begin{split} w_{1,3}^{3} &= \log \frac{P((1,3) \in E_{3} | w_{1,3}^{1}, w_{1,3}^{2})}{P((1,3) \notin E_{3} | w_{1,3}^{1}, w_{1,3}^{2})} \\ &= \log \frac{\frac{P((1,3) \in E_{3}) P(w_{1,3}^{1}, w_{1,3}^{2})|(1,3) \in E_{3})}{P(w_{1,3}^{1}, w_{1,3}^{2})}}{\frac{P((1,3) \in E_{3}) P(w_{1,3}^{1}, w_{1,3}^{2})|(1,3) \notin E_{3})}{P(w_{1,3}^{1}, w_{1,3}^{2})} \end{split}$$
Bayes' rule
$$&= \log \frac{P(w_{1,3}^{1}, w_{1,3}^{2})|(1,3) \in E_{3})}{P(w_{1,3}^{1}, w_{1,3}^{2})|(1,3) \notin E_{3})} \\ &= \log \frac{P(w_{1,3}^{1}|(1,3) \in E_{3}) P(w_{1,3}^{2})|(1,3) \in E_{3})}{P(w_{1,3}^{1}|(1,3) \notin E_{3}) P(w_{1,3}^{2})|(1,3) \notin E_{3})} \\ &= \log \frac{P(w_{1,3}^{1}|(1,3) \notin E_{3}) P(w_{1,3}^{2})|(1,3) \notin E_{3})}{P(w_{1,3}^{1}|(1,3) \notin E_{3}) P(w_{1,3}^{2})|(1,3) \notin E_{3})} \\ &= w_{1,3}^{1} + w_{1,3}^{2} \end{split}$$

Take away messages so far ... (combine with outline slide)

- Maximum likelihood approach: inferring the regulatory network structure by using gene expressions is difficult => exponentially many cases to score, some undistinguishable cases)
- Limit search space => relevance networks
- Use many data types => binding, motif, chromatin, etc.
- Integrated approaches work the best!

Goals for today: Network analysis

- 1. Introduction to networks
- 2. Applications of regulatory networks
 - Predicting expression of target genes: graphical models, linear regression and regression trees
 - Predicting functions of un-annotated genes, guilt by association
- 3. Inferring "structure" of regulatory networks
 - Likelihood approach, challenges
 - Simplified approaches and their problems
 - Integrated approaches
- 4. Structural properties of regulatory networks
 - Scale free degree distribution
 - Network motifs
 - Spectral clustering and modular networks

Structural Properties of Regulatory networks

- "Scale-free": Graph is self-similar at all scales
- Degree distribution follows a power law
 – P(d) ~ d^γ
- Implies the presence of hubs
- Hub perturbations are often lethal

Adapted from Albert 05,

Regulatory networks have scale-free distribution

network

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Lee, Tong Ihn et al. "Transcriptional regulatory networks in Saccharomyces cerevisiae." Science 298, no. 5594 (2002): 799-804.

Why are scale free distributions important

- Presence of hubs
- Make the network robust to perturbations
- Preserve overall connectivity
- Perturbations to hubs is often lethal for an organism

Structural network motifs

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Lee, Tong Ihn et al. "Transcriptional regulatory networks in Saccharomyces cerevisiae." Science 298, no. 5594 (2002): 799-804.

Feed-forward loops involved in speeding up in response of target gene

Lee et.al. 2002, Mangan & Alon, 2003

Modularity of regulatory networks

• Modular: Graph with densely connected subgraphs

- Genes in modules involved in similar functions and coregulated
- Modules can be identified using graph partitioning algorithms
 - Markov Clustering Algorithm
 - Girvan-Newman Algorithm
 - <u>Spectral partitioning</u>

Newman PNAS 2007

An algebraic view to networks

- A matrix representation of a network:
 - Unweighted network => binary adjacency matrix
 - Weighted network => real-valued matrix

An algebraic view to networksexample

L =

A =

0	1	1	1	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	1	0	0	0	0
1	1	1	0	1	0	0	0
0	0	0	1	0	1	1	1
0	0	0	0	1	0	1	1
0	0	0	0	1	1	0	1
0	0	0	0	1	1	1	0

2	1	1	1	0	•	•	•
3	-1	-1	-1	0	U	U	U
-1	3	-1	-1	0	0	0	0
-1	-1	3	- 1	0	0	0	0
-1	-1	-1	4	- 1	0	0	0
0	0	0	-1	4	-1	- 1	-1
0	0	0	0	-1	3	-1	-1
0	0	0	0	-1	-1	3	-1
0	0	0	0	-1	-1	-1	3

Adjacency Matrix

Eigen decomposition principleintroduction

• Suppose *L* is a square matrix:

$$L = U\Sigma U^{-1}$$

- U contains eigenvectors.
- Σ is a diagonal matrix of eigenvalues.
- For symmetric matrices, eigenvalues are real
- Why is it useful?

$$oldsymbol{\Sigma} = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \ 0 & \lambda_2 & & \ dots & \ddots & dots \ 0 & & \ddots & dots \ 0 & & & \lambda_n \end{pmatrix}$$

5.6458

Spectral Partitioning- problem setup

minimize # of edges between groups

of edges between groups=(total # of edges)-(# edges within groups)

nodes *i* and *j* are connected => $A_{ij}=1$ node *i* in group 1 => $s_i=1$ \longrightarrow nodes *i* and *j* in the same group => $(s_is_j+1)/2=1$ node *i* in group 2 => $s_i=-1$ \longrightarrow nodes *i* and *j* in different groups => $(s_is_j+1)/2=0$

Laplacian matrix plays a major role in network modularization

of edges between groups=(total # of edges)-(# edges within groups)

$$= \left(\frac{1}{2}\sum_{i,j} A_{i,j}\right) - \left(\frac{1}{2}\sum_{i,j} \left(\frac{1}{2}(1+s_is_j)A_{i,j}\right)\right)$$

$$= \frac{1}{4}\left(\sum_{i,j} A_{i,j}\right) - \frac{1}{4}\sum_{i,j} \left(s_is_jA_{i,j}\right)$$

$$= \frac{1}{4}\left(\sum_i K_i\right) - \frac{1}{4}\sum_{i,j} \left(s_is_jA_{i,j}\right) = \frac{1}{4}\mathbf{s}^t L\mathbf{s}$$

$$= \mathbf{s}_{i} = 1$$

$$= \mathbf{s}_{i} = 1$$

$$= \mathbf{s}_{i} = 1$$

Laplacian Matrix

node *i* in group $1 \Rightarrow s_i=1$ node *i* in group $2 \Rightarrow s_i=-1$

Network modularization by using decomposition of Laplacian matrix $\min_{s} s^{t}Ls$

• Use eigen decomposition principles:

$$L \to (\mathbf{v}_i, \lambda_i) \qquad \qquad L = \sum_i \lambda_i \mathbf{v}_i^t \mathbf{v}_i$$

• Project *s* over eigenvectors of *L*: $\mathbf{s} = \sum a_i \mathbf{v}_i$

$$\mathbf{s}^t L \mathbf{s} = \sum_i a_i^2 \lambda_i$$

- Challenges in finding $\overset{i}{o}$ ptimal a_i 's:
 - Without other conditions, a trivial solution exists
 - Second eigenvector characterizes partitioning
 - Vector s should be integer-valued => projection

Network modularization

 $L = U\Sigma U^{-1}$

-revisit to example

U=

0.3536	-0.3825	0.2714	-0.1628	-0.7783	0.0495	-0.0064	-0.1426
0.3536	-0.3825	0.5580	-0.1628	0.6066	0.0495	-0.0064	-0.1426
0.3536	-0.3825	-0.4495	0.6251	0.0930	0.0495	-0.3231	-0.1426
0.3536	-0.2470	-0.3799	-0.2995	0.0786	-0.1485	0.3358	0.6626
0.3536	0.2470	-0.3799	-0.2995	0.0786	-0.1485	0.3358	-0.6626
0.3536	0.3825	0.3514	0.5572	-0.0727	-0.3466	0.3860	0.1426
0.3536	0.3825	0.0284	-0.2577	-0.0059	-0.3466	-0.7218	0.1426
0.3536	0.3825	0.0000	0.0000	0.0000	0.8416	-0.0000	0.1426

 $\Sigma =$

0	0	0	0	0	0	0	0
0	(0.354	20	0	0	0	0	0
0	Ō	4.000	0 0	0	0	0	0
0	0	0	4.000	0 0	0	0	0
0	0	0	0	4.000	0 0	0	0
0	0	0	0	0	4.000	0 0	0
0	0	0	0	0	0	4.0000	0
0	0	0	0	0	0	0	
5.6	5458						

Goals for today: Network analysis

- 1. Introduction to networks
- 2. Applications of regulatory networks
 - Predicting expression of target genes: graphical models, linear regression and regression trees
 - Predicting functions of un-annotated genes, guilt by association
- 3. Inferring "structure" of regulatory networks
 - Likelihood approach, challenges
 - Simplified approaches and their problems
 - Integrated approaches
- 4. Structural properties of regulatory networks
 - Scale free degree distribution
 - Network motifs
 - Spectral clustering and modular networks

Conclusions

- Regulatory networks are central to gaining a systems-level understanding of living systems
- Structure and functional aspects of the network is unknown
- Probabilistic models provide a mathematical framework of representing and learning regulatory networks

Open issues

• Validation

– How do we know the network structure is right?

- How do we know if the network function is right?
- Measuring and modeling protein expression
- Understanding the evolution of regulatory networks

Further reading

- Probabilistic graphical models
- Network structure analysis
- Function Prediction

Predicting expression

- Goal: Learn a parametric relationship between regulators and a target gene
- Use the "regulation function" of every target gene as a predictive model
- Predicting expression of multiple genes is essentially equivalent to solving a bunch of regression problems

Modeling the regulatory functions

- Conditional Gaussian models
 - Linear regression model
- Regression Trees
 - Non-linear regression

Hierarchy of more complex models

Figure removed due to copyright restrictions.

From Lei Zhang, RPI

6.047 / 6.878 / HST.507 Computational Biology Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.