

Lecture 05

Hidden Markov Models

Part II

6.047/6.878/HST.507
Computational Biology: Genomes, Networks, Evolution

1

2

Module 1: Aligning and modeling genomes

• Module 1: Computational foundations
– Dynamic programming: exploring exponential spaces in poly-time
– Introduce Hidden Markov Models (HMMs): Central tool in CS
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring

• This week: Sequence alignment / comparative genomics
– Local/global alignment: infer nucleotide-level evolutionary events
– Database search: scan for regions that may have common ancestry

• Next week: Modeling genomes / exon / CpG island finding
– Modeling class of elements, recognizing members of a class
– Application to gene finding, conservation islands, CpG islands

3

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures (GENSCAN), chromatin (ChromHMM)

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x annotation + params

4

Markov chains and Hidden Markov Models (HMMs)

• What you see is what you get:
next state only depends on
current state (no memory)

Sun

Rain

Clouds

Snow

• Hidden state of the world determines
emission probabilities

• State transitions are a Markov chain

hidden

observed

All observed

Summer Fall Winter Spring

Transitions

Emissions

Transitions

• Markov Chain
– Q: states
– p: initial state probabilities
– A: transition probabilities

• HMM
– Q: states, p: initial, A: transitions
– V: observations
– E: emission probabilities

5

HMM nomenclature for this course

• Vector x = Sequence of observations

• Vector π = Hidden path (sequence of hidden states)

• Transition matrix A=akl=probability of kl state transition

• Emission vector E=ek(xi) = prob. of observing xi from state k

• Bayes’s rule: Use P(xi|πi=k) to estimate P(πi=k|xi)

Fall Winter Spring

Emissions: ek(xi)=P(xi|πi=k)

Transitions: akl=P(πi=l|πi-1=k) Summer π=

x=

πi

xi

Transition probability
from state k to state l

Emission probability of
symbol xi from state k

6

Example: The Dishonest Casino

A casino has two dice:
• Fair die
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
• Loaded die
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10
 P(6) = 1/2
Casino player switches between fair and loaded

die on average once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die,

maybe with loaded die)
4. Highest number wins $2

Slide credit: Serafim Batzoglou

7

Examples of HMMs for genome annotation
Application Detection

of GC-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

Topology /
Transitions

2 states,
different
nucleotide
composition

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

Hidden
States /
Annotation

GC-rich / AT-
rich

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Emissions /
Observatio
ns

Nucleotides Level of
conservation

Triplets of
nucleotides

Nucleotide
triplets,
conservation
levels

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

8

SC
O

R
IN

G

PA
R

SI
N

G

LE
A

R
N

IN
G

The main questions on HMMs
1. Scoring x, one path = Joint probability of a sequence and a path, given the model

– GIVEN a HMM M, a path , and a sequence x,
– FIND Prob[x, | M]
 “Running the model”, simply multiply emission and transition probabilities
 Application: “all promoter” vs. “all backgorund” comparisons

2. Scoring x, all paths = total probability of a sequence, summed across all paths
– GIVEN a HMM M, a sequence x
– FIND the total probability P[x | M] summed across all paths
 Forward algorithm, sum score over all paths (same result as backward)

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states
– GIVEN a HMM M, and a sequence x,
– FIND the sequence * of states that maximizes P[x, | M]
 Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path

4. Posterior decoding = total prob that emission xi came from state k, across all paths
– GIVEN a HMM M, a sequence x
– FIND the total probability P[i = k | x, M)
 Posterior decoding: run forward & backward algorithms to & from state I =k

5. Supervised learning = optimize parameters of a model given training data
– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
– FIND parameters = (ei, aij) that maximize P[x |]
 Simply count frequency of each emission and transition observed in the training data

6. Unsupervised learning = optimize parameters of a model given training data
– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
– FIND parameters = (ei, aij) that maximize P[x |]
 Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

9

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

10

Probability of given path p, emissions x

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• P(x,) = a01
 * Πi ei

(xi) aii+1

start emission transition

x is the
(observed)
sequence

π is the
(hidden) path

es(xi)

ast

Courtesy of Serafim Batzoglou. Used with permission.

11

Example: One particular P vs. B assignment

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

P P

1 0 2 1 3 2 7

7

3 6 2 2

(|) (|) (|) (|) (|) (|)... (|)

(0.85) (0.25) (0.75) (0.42) 0.30 0.15

6.7 10

P P G B P B B P C B P B B P A B P P B P C B

B B B B B
0.85

0.25

0.85

0.15 0.25

0.25 0.25 0.42 0.42 0.30 0.25 0.25

0.85

P P P
0.75 0.75

12

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

13

Finding the most likely path

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x2 x3 xK

2
1

K

2

x1

• Find path * that maximizes total joint probability P[x,]

• argmaxπP(x,) =argmaxπ a01
 * Πi ei

(xi) aii+1

start emission transition
14

Calculate maximum P(x,) recursively

• Assume we know Vj for the previous time step (i-1)

• Calculate Vk(i) = ek(xi) * maxj (Vj(i-1) ajk)

xi

ek

k
j

ajk …
…

xi-1

…
Vj(i-1)

Vk(i) hidden
states

observations

this emission Transition
from state j

max ending
in state j at step i

all possible previous states j

current max

Viterbi algortithm
Define Vk(i) = Probability of the most likely path through state i=k
Compute Vk(i+1) recursively, as a function of maxk’ { Vk’(i) }

15

The Viterbi Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 V0(0)=1, Vk(0) = 0, for all k > 0

Iteration:
 Vk(i) = eK(xi) maxj ajk Vj(i-1)

Termination:
 P(x, *) = maxk Vk(N)

Traceback:
 Follow max pointers back

In practice:
 Use log scores for computation

Running time and space:
 Time: O(K2N)
 Space: O(KN)

State 1

2

K

Vk(i)

16

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

17

P(x) Prob that model emits x, sum over all paths

Given a sequence x,
What is the probability that x was generated by the model (using any path)?

– P(x) = Σπ P(x,π)
• Challenge: exponential number of paths

– Sum over all paths, weighing the path probability, and the emission probs
– Prob of emitting sequence: use individual emission probs from each state
– Prob of path: use both emission and transition prob, based on previous path

1
2

K
…

1
2

K
…

1
2

K
…

…

…

…

1
2

K
…

x1 x2 x3 xn

2
1

K

2
0

e2(x1)

a02

• P(x) = Σπ a01
 * Πi ei

(xi) aii+1

start emission transition
18

Calculate total probability Σπ P(x,) recursively

• Assume we know fj for the previous time step (i-1)

• Calculate fk(i) = ek(xi) * sumj (fj(i-1) ajk)

xi

ek

k
j

ajk …
…

xi-1

…
fj(i-1)

fk(i) hidden
states

observations

this emission transition
from state j

sum ending
in state j at step i

Sum over all previous states j

current sum

19

The Forward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 f0(0)=1, fk(0) = 0, for all k > 0

Iteration:
 fk(i) = eK(xi) sumj ajk fj(i-1)

Termination:
 P(x, *) = sumk fk(N)

In practice:
 Sum of log scores is difficult
 approximate exp(1+p+q)
 scaling of probabilities

Running time and space:
 Time: O(K2N)
 Space: O(K)

State 1

2

K

fk(i)

20

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x annotation + params

21

Increasing the state space
(remembering more)

HMM1: Promoters = only Cs and Gs matter
HMM2: Promoters = it’s actually CpGs that matter

(di-nucleotides, remember previous nucleotide)

22

Increasing the state of the system (looking back)

• Markov Models are memory-less
– In other words, all memory is encoded in the states
– To remember additional information, augment state

• A two-state HMM has minimal memory
– Two states: GC-rich vs. equal probability
– State, emissions, only depend on current state
– Current state only encodes one previous nucleotide

• How do you count di-nucleotide frequencies?
– CpG islands: di-nucleotides
– Codon triplets: tri-nucleotides
– Di-codon frequencies: six nucleotides

 Expanding the number of states

+ -

A: .2

C: .3

G: .3

T: .2

A: 1/4

C: 1/4

G: 1/4

T: 1/4

a++ a-- a+-

a-+

23

Remember previous nucleotide: expand both states

A
+

T
+

G
+

C
+

A: 0
C

: 0
G

: 1
T: 0

A: 1
C

: 0
G

: 0
T: 0

A: 0
C

: 1
G

: 0
T: 0

A: 0
C

: 0
G

: 0
T: 1

CpG+ CpG-

A: .1

C: .3

G: .4

T: .2

A: 1/4

C: 1/4

G: 1/4

T: 1/4

aPP aBB aPB

aBP

A +

T +

G
+

C
+

A:
 0

C

: 0

G
: 1

T:

 0

A:
 1

C

: 0

G
: 0

T:

 0

A:
 0

C

: 1

G
: 0

T:

 0

A:
 0

C

: 0

G
: 0

T:

 1

“Memory” of previous
nucleotide is encoded
in the current state.

GC-rich: 4 states
Background: 4 states

24

HMM for CpG islands

• A single model combines two Markov
chains, each of four nucleotides:
– ‘+’ states: A+, C+, G+, T+

• Emit symbols: A, C, G, T in CpG islands
– ‘-’ states: A-, C-, G-, T-

• Emit symbols: A, C, G, T in non-islands

• Emission probabilities distinct for the ‘+’
and the ‘-’ states
– Infer most likely set of states, giving rise

to observed emissions
 ‘Paint’ the sequence with + and - states

A+ T+ G+ C+

A- T- G- C-

A: 0

C: 0

G: 1

T: 0

A: 1

C: 0

G: 0

T: 0

A: 0

C: 1

G: 0

T: 0

A: 0

C: 0

G: 0

T: 1

A: 0

C: 0

G: 1

T: 0

A: 1

C: 0

G: 0

T: 0

A: 0

C: 1

G: 0

T: 0

A: 0

C: 0

G: 0

T: 1

Why we need so many states…
In our simple GC-content example, we only had 2 states (+|-)
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?
 Encode ‘memory’ of previous state: nucleotide transitions

25

Training emission parameters for CpG+/CpG- states
• Count di-nucleotide frequencies:

– 16 possible di-nucleotides. 16 transition parameters.
– Alternative: 16 states, each emitting di-nucleotide

• Derive two Markov chain models:
– ‘+’ model: from the CpG islands
– ‘-’ model: from the remainder of sequence

• Transition probabilities for each model:
– Encode differences in di-nucleotide frequencies

+ A C G T
A .180 .274 .426 .120

C .171 .368 .274 .188

G .161 .339 .375 .125

T .079 .355 .384 .182

A T

G C

aGT aAC

aGC

aAT

- A C G T
A .300 .205 .285 .210

C .322 .298 .078 .302

G .248 .246 .298 .208

T .177 .239 .292 .292
26

Examples of HMMs for genome annotation
Detection
of GC-rich
regions

Detection
of CpG-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

2 states,
different
nucleotide
composition

8 states,
4 each +/-,
different
transition
probabilities

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

GC-rich / AT-
rich

CpG-rich /
CpG-poor

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Nucleotides Di-
Nucleotides

Level of
conservation

Triplets of
nucleotides

64x64 matrix
of codon
substitution
frequencies

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

27

HMM architecture matters: Protein-coding genes

• Gene vs. Intergenic
• Start & Stop in/out
• UTR: 5’ and 3’ end
• Exons, Introns
• Remembering frame

– E0,E1,E2
– I0,I1,I2

• Sequence patterns
to transition between
states:
– ATG, TAG,

Acceptor/Donor,
TATA, AATAA

28

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.genezilla.org/design.html
http://ocw.mit.edu/help/faq-fair-use/

Chromatin State: Emission & Transition Matrices

Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012

• Emission matrix:
• Multi-variate HMM
• Emits vector of values

• Transition matrix:
• Learn spatial relationships
• No a-priori ‘gene’ structure

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information,see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for
systematic annotation of the human genome.“ Nature Biotechnology 28, no. 8 (2010): 817-825.

29

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1038/nbt.1662
http://dx.doi.org/10.1038/nbt.1662

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x annotation + params

30

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

31

4. Decoding, all paths

Find the likelihood an emission xi is
generated by a state

32

Calculate most probable label at a single position

• Calculate most probable label, L*
i , at each position i

• Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N}
• How much information have we observed? Three settings:

– Observed nothing: Use prior information
– Observed only character at position i: Prior + emission probability
– Observed entire sequence: Posterior decoding

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

π:

x:

P P P

B

P

B

P

B B

P

B B

P

B

P

B

P P
Sum over all paths

P(Labeli=B|x)

33

Calculate P(π7= CpG+ | x7=G)

• With no knowledge (no characters)
– Simply time spent in markov chain states
– P(πi=k) = most likely state (prior)

• With very little knowledge (just that character)

– Time spent, adjusted for different emission probs.
– Use Bayes rule to change inference directionality
– P(πi=k | xi=G) = P(πι=κ) * P(xi=G|πi=k) / P(xi=G)

• With knowledge of entire sequence (all characters)

– P(πi=k | x=AGCGCG…GATTATCGTCGTA)
– Sum over all paths that emit ‘G’ at position 7
 Posterior decoding

34

Motivation for the Backward Algorithm

We want to compute

 P(i = k | x), the probability distribution on the ith position, given x

We start by computing

P(i = k, x) = P(x1…xi, i = k, xi+1…xN)
 = P(x1…xi, i = k) P(xi+1…xN | x1…xi, i = k)
 = P(x1…xi, i = k) P(xi+1…xN | i = k)

Forward, fk(i) Backward, bk(i)

35

The Backward Algorithm – derivation
Define the backward probability:

 bk(i) = P(xi+1…xN | i = k)
 = i+1…N P(xi+1,xi+2, …, xN, i+1, …, N | i = k)
 = l i+1…N P(xi+1,xi+2, …, xN, i+1 = l, i+2, …, N | i = k)
 = l el(xi+1) akl i+1…N P(xi+2, …, xN, i+2, …, N | i+1 = l)
 = l el(xi+1) akl bl(i+1)

36

Calculate total end probability recursively

• Assume we know bl for the next time step (i+1)

• Calculate bk(i) = suml (el(xi+1) akl bl(i+1))

xi+1

el

l
k

akl

…

…

xi

… bk(i)
bl(i+1)

hidden
states

observations

next
emission

transition
to next state

prob sum from
state l to end

sum over all possible next states

current max

37

The Backward Algorithm

x1 x2 x3 ………………………………………..xN

Input: x = x1……xN

Initialization:
 bk(N) = ak0, for all k

Iteration:
 bk(i) = l el(xi+1) akl bl(i+1)

Termination:
 P(x) = l a0l el(x1) bl(1)

In practice:
 Sum of log scores is difficult
 approximate exp(1+p+q)
 scaling of probabilities

Running time and space:
 Time: O(K2N)
 Space: O(K)

State 1

2

K

bk(i)

38

Putting it all together: Posterior decoding

• P(k) = P(πi=k | x) = fk(i)*bk(i) / P(x)
– Probability that ith state is k, given all emissions x

• Posterior decoding
– Find the most likely state at position i over all possible hidden paths

given the observed sequence x
– ^

i = argmaxk P(i = k | x)
• Posterior decoding ‘path’ ^

i
– For classification, more informative than Viterbi path *

• More refined measure of “which hidden states” generated x
– However, it may give an invalid sequence of states

• Not all jk transitions may be possible

x1 x2 x3 ………………………………………..xN

State 1

2

K

P(k)

39

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x annotation + params

40

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

41

Learning: How to train an HMM

Transition probabilities
e.g. P(Pi+1|Bi) – the
probability of entering a
pathogenicity island from
background DNA

Emission probabilities

i.e. the nucleotide
frequencies for
background DNA and
pathogenicity islands

B P

P(S|P) P(S|B)

P(Li+1|Li)

42

Two learning scenarios

Case 1. Estimation when the “right answer” is known

Examples:
 GIVEN: a genomic region x = x1…x1,000,000 where we have good

 (experimental) annotations of the CpG islands

Case 2. Estimation when the “right answer” is unknown

Examples:

 GIVEN: the porcupine genome; we don’t know how frequent are the

 CpG islands there, neither do we know their composition

QUESTION: Update the parameters of the model to maximize P(x|)

43

Two types of learning: Supervised / Unsupervised
5. Supervised learning
 infer model parameters given labeled training data

– GIVEN:
• a HMM M, with unspecified transition/emission probs.
• labeled sequence x,

– FIND:
• parameters = (Ei, Aij) that maximize P[x |]

 Simply count frequency of each emission and transition,
 as observed in the training data

6. Unsupervised learning
 infer model parameters given unlabelled training data

– GIVEN:
• a HMM M, with unspecified transition/emission probs.
• unlabeled sequence x,

– FIND:
• parameters = (Ei, Aij) that maximize P[x |]

 Viterbi training:
guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

 Baum-Welch training:
guess parameters, sum over all paths (#4), update parameters (#5), iterate 44

5: Supervised learning

Estimate model parameters
based on labeled training data

45

Case 1. When the right answer is known
Given x = x1…xN
for which the true = 1…N is known,

Define:

 Akl = # times kl transition occurs in
 Ek(b) = # times state k in emits b in x

We can show that the maximum likelihood parameters are:

 Akl Ek(b)
 akl = ––––– ek(b) = –––––––
 i Aki c Ek(c)

46

Learning From Labelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

If we have a sequence that has islands marked, we can simply count

A:
T:
G:
C:

A: 1/5
T: 0
G: 2/5
C: 2/5

P(S|P) P(S|B) P(Li+1|Li)
Bi+1 Pi+1 End

Bi 3/5 1/5 1/5

Pi 1/3 2/3 0

Start 1 0 0

End start

P

B B B B B

P

ETC..

 Maximum Likelihood Estimation

!

47

Case 1. When the right answer is known
Intuition: When we know the underlying states,
 Best estimate is the average frequency of
 transitions & emissions that occur in the training data

Drawback:
 Given little data, there may be overfitting:
 P(x|) is maximized, but is unreasonable
 0 probabilities – VERY BAD

Example:
 Given 10 nucleotides, we observe
 x = C, A, G, G, T, C, C, A, T, C

 = P, P, P, p, p, P, P, P, P, P

 Then:
 aPP = 1; aPB = 0
 eP(A) = .2;
 eP(C) = .4;
 eP(G) = .2;
 eP(T) =.2

48

Pseudocounts
Solution for small training sets:

 Add pseudocounts

 Akl = # times kl transition occurs in + rkl
 Ek(b) = # times state k in emits b in x + rk(b)

rkl, rk(b) are pseudocounts representing our prior belief

Larger pseudocounts Strong priof belief

Small pseudocounts (< 1): just to avoid 0 probabilities

49

Example: Training Markov Chains for CpG islands

• Training Set:
– set of DNA sequences w/ known CpG islands

• Derive two Markov chain models:
– ‘+’ model: from the CpG islands
– ‘-’ model: from the remainder of sequence

• Transition probabilities for each model:

t' st'

st
st

c

c
a

stc is the number of times

letter t followed letter s
inside the CpG islands

+ A C G T
A .180 .274 .426 .120

C .171 .368 .274 .188

G .161 .339 .375 .125

T .079 .355 .384 .182

A T

G C

aG

T
aA

C
aGC

aAT

t' st'

st
st

c

c
a

stc is the number of times
letter t followed letter s
outside the CpG islands

- A C G T
A .300 .205 .285 .210

C .322 .298 .078 .302

G .248 .246 .298 .208

T .177 .239 .292 .292
50

6: Unsupervised learning

Estimate model parameters
based on unlabeled training data

51

Unlabelled Data

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

How do we know how to count?

A:
T:
G:
C:

A:
T:
G:
C:

P(S|P) P(S|B) P(Li+1|Li)
Bi+1 Pi+1 End

Bi

Pi ?
Start

End start

P P

?

52

Unlabeled Data

An idea:
1. Imagine we start with some parameters
2. We could calculate the most likely path,

P*, given those parameters and S
3. We could then use P* to update our

parameters by maximum likelihood
4. And iterate (to convergence)

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

P(S|P)0 P(S|B)0 P(Li+1|Li)0

End start

P P

P(S|P)1 P(S|B)1 P(Li+1|Li)1

P(S|P)2 P(S|B)2 P(Li+1|Li)2

P(S|P)K P(S|B)K P(Li+1|Li)K

…

B B B B B B B B B B B B B

P P P

53

Learning case 2. When the right answer is unknown

We don’t know the true Akl, Ek(b)

Idea:
• We estimate our “best guess” on what Akl, Ek(b) are

(M step, maximum-likelihood estimation)
• We update the probabilistic parse of our sequence,

based on these parameters (E step, expected
probability of being in each state given parameters)

• We repeat

Two settings:
• Simple: Viterbi training (best guest = best path)
• Correct: Expectation maximization (all paths, weighted)

54

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

7. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

55

Simple casae: Viterbi Training

Initialization:
Pick the best-guess for model parameters
 (or arbitrary)
Iteration:

1. Perform Viterbi, to find *
2. Calculate Akl, Ek(b) according to * + pseudocounts
3. Calculate the new parameters akl, ek(b)

Until convergence
Notes:

– Convergence to local maximum guaranteed. Why?
– Does not maximize P(x |)
– In general, worse performance than Baum-Welch

56

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

57

Expectation Maximization (EM)

EM pervasive in computational biology
 Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

The basic idea is the same:

1.Use model to estimate missing data (E step)
2.Use estimate to update model (M step)

3.Repeat until convergence

EM is a general approach for learning models
(ML estimation) when there is “missing data”

Widely used in computational biology

58

1. Initialize parameters randomly

2. E Step Estimate expected probability of hidden labels, Q, given current
(latest) parameters and observed (unchanging) sequence

3. M Step Choose new maximum likelihood parameters over
probability distribution Q, given current probabilistic label assignments

4. Iterate

Expectation Maximization (EM)

(| ,)1Q P Labels S paramst

1arg max log (, |)t t

Q
params

params E P S labels params

P(S|Model) guaranteed to increase each iteration
59

Case 2. When the right answer is unknown
Starting with our best guess of a model M, parameters :

 Given x = x1…xN
 for which the true = 1…N is unknown,

We can get to a provably more likely parameter set

Principle: EXPECTATION MAXIMIZATION

1. Estimate probabilistic parse based on parameters (E step)
2. Update parameters Akl, Ek based on probabilistic parse (M step)
3. Repeat 1 & 2, until convergence

60

Estimating probabilistic parse given params (E step)
To estimate Akl:

At each position i:

Find probability transition kl is used:

P(i = k, i+1 = l | x) = [1/P(x)] P(i = k, i+1 = l, x1…xN) = Q/P(x)

where Q = P(x1…xi, i = k, i+1 = l, xi+1…xN) =
 = P(i+1 = l, xi+1…xN | i = k) P(x1…xi, i = k) =
 = P(i+1 = l, xi+1xi+2…xN | i = k) fk(i) =
 = P(xi+2…xN | i+1 = l) P(xi+1 | i+1 = l) P(i+1 = l | i = k) fk(i) =
 = bl(i+1) el(xi+1) akl fk(i)

 fk(i) akl el(xi+1) bl(i+1)
So: P(i = k, i+1 = l | x,) = ––––––––––––––––––
 P(x |)

(For one such transition, at time step ii+1)

P

B

P

B

P

B B

P

B B

P

B

P

B

G C A A A T G C

L:

S:

End start

P P

B

P

K

L

i j

61

New parameters given probabilistic parse (M step)

So,

 fk(i) akl el(xi+1) bl(i+1)

Akl = i P(i = k, i+1 = l | x,) = i –––––––––––––––––
 P(x |)

Similarly,

 Ek(b) = [1/P(x)] {i | xi = b} fk(i) bk(i)

(Sum over all kl transitions, at any time step i)

62

Dealing with multiple training sequences

(Sum over all training seqs, all kl transitions, all time steps i)
If we have several training sequences, x1, …, xM, each of length N,

 fk(i) akl el(xi+1) bl(i+1)

Akl = x i P(i = k, i+1 = l | x,) = x i ––––––––––––––––
 P(x |)

Similarly,

 Ek(b) = x (1/P(x)) {i | xi = b} fk(i) bk(i)

63

The Baum-Welch Algorithm
Initialization:
 Pick the best-guess for model parameters
 (or arbitrary)

Iteration:

1. Forward
2. Backward
3. Calculate new log-likelihood P(x |) (E step)
4. Calculate Akl, Ek(b)
5. Calculate new model parameters akl, ek(b) (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until P(x |) does not change much

64

The Baum-Welch Algorithm – comments
Time Complexity:

 # iterations O(K2N)

• Guaranteed to increase the log likelihood of the model

P(| x) = P(x,) / P(x) = P(x |) / (P(x) P())

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining

65

1. Scoring x, one path

 P(x,π)

Prob of a path, emissions

2. Scoring x, all paths

 P(x) = Σπ P(x,π)

Prob of emissions, over all paths

3. Viterbi decoding

 π* = argmaxπ P(x,π)

Most likely path

4. Posterior decoding

π^ = {πi | πi=argmaxk ΣπP(πi=k|x)}

Path containing the most likely
state at any time point.

One path All paths
D

ec
od

in
g

Sc
or

in
g

Le
ar

ni
ng

 5. Supervised learning, given π
 Λ* = argmaxΛ P(x,π|Λ)
6. Unsupervised learning.
 Λ* = argmaxΛ maxπP(x,π|Λ)
 Viterbi training, best path

6. Unsupervised learning

 Λ* = argmaxΛ ΣπP(x,π|Λ)

Baum-Welch training, over all paths

66

Examples of HMMs for genome annotation
Detection
of GC-rich
regions

Detection
of CpG-rich
regions

Detection
of
conserved
regions

Detection
of protein-
coding
exons

Detection
of protein-
coding
conservatio
n

Detection
of protein-
coding
gene
structures

Detection
of
chromatin
states

2 states,
different
nucleotide
composition

8 states,
4 each +/-,
different
transition
probabilities

2 states,
different
conservation
levels

2 states,
different tri-
nucleotide
composition

2 states,
different
evolutionary
signatures

~20 states,
different
composition/
conservation
, specific
structure

40 states,
different
chromatin
mark
combination
s

GC-rich / AT-
rich

CpG-rich /
CpG-poor

Conserved /
non-
conserved

Coding exon
/ non-coding
(intron or
intergenic)

Coding exon
/ non-coding
(intron or
intergenic)

First/last/mid
dle coding
exon,UTRs,
intron1/2/3,
intergenic,
*(+/- strand)

Enhancer /
promoter /
transcribed /
repressed /
repetitive

Nucleotides Di-
Nucleotides

Level of
conservation

Triplets of
nucleotides

64x64 matrix
of codon
substitution
frequencies

Codons,
nucleotides,
splice sites,
start/stop
codons

Vector of
chromatin
mark
frequencies

67

What have we learned ?
• Generative model. Hidden states, observed emissions.

– Generate a random sequence
• Choose random transition, choose random emission (#0)

• Scoring: Finding the likelihood of a given sequence
– Calculate likelihood of annotated path and sequence

• Multiply emission and transition probabilities (#1)
– Without specifying a path, total probability of generating x

• Sum probabilities over all paths
• Forward algorithm (#3)

• Decoding: Finding the most likely path, given a sequence
– What is the most likely path generating entire sequence?

• Viterbi algorithm (#2)
– What is the most probable state at each time step?

• Forward + backward algorithms, posterior decoding (#4)
• Learning: Estimating HMM parameters from training data

– When state sequence is known
• Simply compute maximum likelihood A and E (#5a)

– When state sequence is not known
• Viterbi training: Iterative estimation of best path / frequencies (#5b)
• Baum-Welch: Iterative estimation over all paths / frequencies (#6) 68

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time
– Markov Chains and Hidden Markov Models
– Calculating likelihoods P(x,π) (algorithm 1)
– Viterbi algorithm: Find π* = argmaxπ P(x,π) (alg 3)
– Forward algorithm: Find P(x), over all paths (alg 2)

2. Increasing the ‘state’ space / adding memory
– Finding GC-rich regions vs. finding CpG islands
– Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of ‘parsing’
– Find most likely state πi, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)
– Supervised: Find ei(.) and aij given labeled sequence
– Unsupervised: given only x annotation + params

69

MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 / HST.507 Computational Biology
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

