6.047/6.878/HST.507 Computational Biology: Genomes, Networks, Evolution

Lecture 05

Hidden Markov Models Part II

Module 1: Aligning and modeling genomes

- Module 1: Computational foundations
 - Dynamic programming: exploring exponential spaces in poly-time
 - Introduce Hidden Markov Models (HMMs): Central tool in CS
 - HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring
- This week: Sequence alignment / comparative genomics
 - Local/global alignment: infer nucleotide-level evolutionary events
 - Database search: scan for regions that may have common ancestry
- Next week: Modeling genomes / exon / CpG island finding
 - Modeling class of elements, recognizing members of a class
 - Application to gene finding, conservation islands, CpG islands

Goals for today: HMMs, part II

- 1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x,\pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ (alg 3)
 - Forward algorithm: Find P(x), over all paths (alg 2)
- 2. Increasing the 'state' space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures (GENSCAN), chromatin (ChromHMM)
- 3. Posterior decoding: Another way of 'parsing'
 - Find most likely state π_i , sum over all possible paths
- 4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params

Markov chains and Hidden Markov Models (HMMs)

- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities
- What you see is what you get: next state only depends on current state (no memory)

- HMM
 - Q: states, p: initial, A: transitions
 - V: observations
 - E: emission probabilities
- Hidden state of the world determines
 emission probabilities
- State transitions are a Markov chain

HMM nomenclature for this course

- Vector x = Sequence of observations
- Vector π = Hidden path (sequence of hidden states)
- Transition matrix $A=a_{kl}=probability$ of $k \rightarrow l$ state transition
- Emission vector $E = e_k(x_i) = \text{prob. of observing } x_i$ from state k
- Bayes's rule: Use $P(x_i | \pi_i = k)$ to estimate $P(\pi_i = k | x_i)$

Example: The Dishonest Casino

A casino has two dice:

• Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

Loaded die

P(1) = P(2) = P(3) = P(4) = P(5) = 1/10

P(6) = 1/2

Casino player switches between fair and loaded die on average once every 20 turns

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

Examples of HMMs for genome annotation

Application	Detection of GC-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
Topology / Transitions	2 states, different nucleotide composition	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
Hidden States / Annotation	GC-rich / AT- rich	Conserved / non- conserved	Coding exon / non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, *(+/- strand)	Enhancer / promoter / transcribed / repressed / repetitive
Emissions / Observatio ns	Nucleotides	Level of conservation	Triplets of nucleotides	Nucleotide triplets, conservation levels	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

The main questions on HMMs

1. Sco - - 2. Sco - -	GIVEN GIVEN FIND (Runnin) Applicat Fing x, all GIVEN FIND Forward	a HMM M, a path π , and a sequence and a path, given the model a HMM M, a path π , and a sequence x, Prob[x, $\pi \mid M$] ng the model", simply multiply emission and transition probabilities tion: "all promoter" vs. "all backgorund" comparisons paths = total probability of a sequence, summed across all paths a HMM M, a sequence x the total probability P[x M] summed across all paths algorithm, sum score over all paths (same result as backward)	SCORING
3. Vite - - 4. Pos - -	 GIVEN GIVEN FIND Viterbi algo Viterior dec GIVEN GIVEN FIND Posterior 	ling = parsing a sequence into the optimal series of hidden states a HMM M, and a sequence x, the sequence π^* of states that maximizes P[x, $\pi \mid M$] prithm, dynamic programming, max score over all paths, trace pointers find path coding = total prob that emission x _i came from state k, across all paths a HMM M, a sequence x the total probability P[$\pi_i = k \mid x, M$) r decoding: run forward & backward algorithms to & from state $\pi_i = k$	PARSING
5. Sup - - - 6. Uns -	GIVEN GIVEN FIND Simply co GIVEN FIND	earning = optimize parameters of a model given training data a HMM M, with unspecified transition/emission probs., labeled sequence x, parameters $\theta = (e_i, a_{ij})$ that maximize P[x θ] ount frequency of each emission and transition observed in the training data d learning = optimize parameters of a model given training data a HMM M, with unspecified transition/emission probs., unlabeled sequence x, parameters $\theta = (e_i, a_{ij})$ that maximize P[x θ]	EARNING

→ Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

9

→ Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

	One path	All paths
	1. Scoring x, one path	2. Scoring x, all paths
Scoring	P(x,π) Prob of a path, emissions	$P(x) = \sum_{\pi} P(x,\pi)$ Prob of emissions, over all paths
	3. Viterbi decoding	4. Posterior decoding
odin	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$
Dec	Most likely path	Path containing the most likely state at any time point.
D	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$	6. Unsupervised learning
arnin	 6. Unsupervised learning. Λ* = argmax₄ max₄P(x,πIΛ) 	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Lea	Viterbi training, best path	Baum-Welch training, over all paths

Probability of given path p, emissions x

 π is the (hidden) path

Example: One particular P vs. B assignment

 $P = P(G | B)P(B_1 | B_0)P(C | B)P(B_2 | B_1)P(A | B)P(P_3 | B_2)...P(C | B_7)$ = (0.85)³ × (0.25)⁶ × (0.75)² × (0.42)² × 0.30 × 0.15 = 6.7 × 10⁻⁷

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
orinç	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
Sco	Prob of a path, emissions	Prob of emissions, over all paths
D	3. Viterbi decoding	4. Posterior decoding
sodin	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$
Dec	Most likely path	Path containing the most likely state at any time point.
δ	5. Supervised learning, given π	6. Unsupervised learning
arnin	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
0	Viterbi training, best path	Baum-Welch training, over all paths

13

Finding the most likely path

• Find path π^* that maximizes total joint probability P[x, π]

start

• $\operatorname{argmax}_{\pi} P(x,\pi) = \operatorname{argmax}_{\pi} (a_{0\pi_1})^* \prod_i (e_{\pi_i}(x_i))^*$

a_{πi^πi+1</sup>}

X

emission transition

Calculate maximum $P(x,\pi)$ recursively

Viterbi algortithm

Define $V_k(i)$ = Probability of the most likely path through state π_i =k Compute $V_k(i+1)$ recursively, as a function of max_{k'} { $V_{k'}(i)$ }

• Assume we know V_i for the previous time step (i-1)

all possible previous states j

The Viterbi Algorithm State 1 2 2 0

 $\mathbf{X}_1 \quad \mathbf{X}_2 \quad \mathbf{X}_3 \quad \dots \quad \mathbf{X}_N$

Input:
$$x = x1....xN$$

Initialization:

 $V_0(0)=1$, $V_k(0)=0$, for all k > 0

Iteration:

 $V_k(i) = e_K(x_i) \times \max_j a_{jk} V_j(i-1)$

Termination:

 $P(x, \pi^*) = \max_k V_k(N)$

Traceback:

Follow max pointers back

In practice:

Use log scores for computation

Running time and space:

Time: O(K²N) Space: O(KN)

	One path	All paths
	1. Scoring x, one path	2. Scoring x, all paths
Scoring	P(x,π) Prob of a path, emissions	$P(x) = \Sigma_{\pi} P(x,\pi)$ Prob of emissions, over all paths
	3. Viterbi decoding	4. Posterior decoding
coding	π* = argmax _π P(x,π)	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$
De	Most likely path	Path containing the most likely
bg	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning
arni	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Ŭ	Viterbi training, best path	Baum-Welch training, over all paths

P(x) ⇔ Prob that model emits x, sum over all paths

Given a sequence x,

What is the probability that x was generated by the model (using any path)?

$$- P(x) = \sum_{\pi} P(x,\pi)$$

• Challenge: exponential number of paths

- Sum over all paths, weighing the path probability, and the emission probs
- Prob of emitting sequence: use individual emission probs from each state
- Prob of path: use both emission and transition prob, based on previous path

•
$$P(x) = \sum_{\pi} (a_{0\pi_1}) * \prod_{i=1}^{n} (e_{\pi_i}(x_i) \times (a_{\pi_i\pi_{i+1}})$$

start emission transition

Calculate total probability $\Sigma_{\pi} P(x,\pi)$ recursively

Assume we know f_i for the previous time step (i-1)

Sum over all previous states j

The Forward Algorithm

 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input: x = x1.....xN

Initialization:

 $f_0(0)=1$, $f_k(0)=0$, for all k > 0

Iteration:

 $f_k(i) = e_K(x_i) \times sum_i a_{ik} f_i(i-1)$

Termination:

 $P(x, \pi^*) = sum_k f_k(N)$

In practice:

Sum of log scores is difficult

 \rightarrow approximate exp(1+p+q)

 \rightarrow scaling of probabilities

Running time and space:

Time: O(K²N) Space: O(K)

Goals for today: HMMs, part II

- 1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x,\pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ (alg 3)
 - Forward algorithm: Find P(x), over all paths (alg 2)
- 2. Increasing the 'state' space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM
- 3. Posterior decoding: Another way of 'parsing'
 - Find most likely state π_i , sum over all possible paths
- 4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params

Increasing the state space (remembering more)

HMM1: Promoters = only Cs and Gs matter HMM2: Promoters = it's actually CpGs that matter (di-nucleotides, remember previous nucleotide)

Increasing the state of the system (looking back)

- Markov Models are memory-less
 - In other words, all memory is encoded in the states
 - To remember additional information, augment state
- A two-state HMM has minimal memory
 - Two states: GC-rich vs. equal probability
 - State, emissions, only depend on current state
 - Current state only encodes **one** previous nucleotide
- How do you count **di**-nucleotide frequencies?
 - CpG islands: di-nucleotides
 - Codon triplets: tri-nucleotides
 - Di-codon frequencies: six nucleotides
- Expanding the number of states

Remember previous nucleotide: expand both states

Background: 4 states

HMM for CpG islands

- A single model combines two Markov chains, each of four nucleotides:
 - **'+' states**: A_+ , C_+ , G_+ , T_+
 - Emit symbols: A, C, G, T in CpG islands
 - **'-' states**: A_{_}, C_{_}, G_{_}, T_{_}
 - Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the '+' and the '-' states
 - Infer most likely set of states, giving rise to observed emissions
 - → 'Paint' the sequence with + and states

Why we need so many states...

In our simple GC-content example, we only had 2 states (+|-) Why do we need 8 states here: 4 CpG+ / 4 CpG-?

➔ Encode 'memory' of previous state: nucleotide transitions

Training emission parameters for CpG+/CpG- states

- Count di-nucleotide frequencies:
 - 16 possible di-nucleotides. 16 transition parameters.
 - Alternative: 16 states, each emitting di-nucleotide
- Derive two Markov chain models:
 - '+' model: from the CpG islands
 - '-' model: from the remainder of sequence
- Transition probabilities for each model:
 - Encode differences in di-nucleotide frequencies

+	Α	С	G	Т
A	.180	.274	.426	.120
С	.171	.368	.274	.188
G	.161	.339	.375	.125
Т	.079	.355	.384	.182

-	Α	С	G	Т
Α	.300	.205	.285	.210
С	.322	.298	.078	.302
G	.248	.246	.298	.208
Т	.177	.239	.292	.292

Examples of HMMs for genome annotation

Detection of GC-rich regions	Detection of CpG-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
2 states, different nucleotide composition	8 states, 4 each +/-, different transition probabilities	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
GC-rich / AT- rich	CpG-rich / CpG-poor	Conserved / non- conserved	Coding exon / non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, *(+/- strand)	Enhancer / promoter / transcribed / repressed / repetitive
Nucleotides	Di- Nucleotides	Level of conservation	Triplets of nucleotides	64x64 matrix of codon substitution frequencies	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

HMM architecture matters: Protein-coding genes

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Gene vs. Intergenic
- Start & Stop in/out
- UTR: 5' and 3' end
- Exons, Introns
- Remembering frame

- E0,E1,E2

- 10,11,12
- Sequence patterns to transition between states:
 - ATG, TAG,
 Acceptor/Donor,
 TATA, AATAA

Chromatin State: Emission & Transition Matrices

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for systematic annotation of the human genome." Nature Biotechnology 28, no. 8 (2010): 817-825.

Emission matrix:

- Multi-variate HMM
- Emits vector of values

Transition matrix:

- Learn spatial relationships
- No a-priori 'gene' structure

Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012 29

Goals for today: HMMs, part II

- 1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x,\pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ (alg 3)
 - Forward algorithm: Find P(x), over all paths (alg 2)
- 2. Increasing the 'state' space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM
- 3. Posterior decoding: Another way of 'parsing'
 - Find most likely state π_i , sum over all possible paths
- 4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
orinç	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
Sco	Prob of a path, emissions	Prob of emissions, over all paths
δ	3. Viterbi decoding	4. Posterior decoding
odin	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$
Dec	Most likely path	Path containing the most likely state at any time point.
σ	5. Supervised learning, given π	6. Unsupervised learning
arning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Û	Viterbi training, best path	Baum-Welch training, over all paths

4. Decoding, all paths

Find the likelihood an emission x_i is generated by a state

Calculate most probable label at a single position

P(Label_i=B|x)

- Calculate most probable label, L^{*}_i, at each position i
- Do this for all N positions gives us {L^{*}₁, L^{*}₂, L^{*}₃..., L^{*}_N}
- How much information have we observed? Three settings:
 - Observed nothing: Use prior information
 - Observed only character at position i: Prior + emission probability
 - Observed entire sequence: Posterior decoding

Calculate $P(\pi_7 = CpG + | x_7 = G)$

- With no knowledge (no characters)
 Simply time spent in markov chain states
 - $P(\pi_i = k) = most likely state ($ **prior**)
- With very little knowledge (just that character)

 Time spent, adjusted for different emission probs.
 Use Bayes rule to change inference directionality
 P(π_i=k | x_i=G) = P(π_i=κ) * P(x_i=G|π_i=k) / P(x_i=G)
- With knowledge of entire sequence (all characters)
 - P($\pi_i = k \mid x = AGCGCG...GATTATCGTCGTA$)
 - Sum over all paths that emit 'G' at position 7
 - → Posterior decoding

Motivation for the Backward Algorithm

We want to compute

 $P(\pi_i = k | x)$, the probability distribution on the ith position, given x

We start by computing

$$P(\pi_{i} = k, x) = P(x_{1}...x_{i}, \pi_{i} = k, x_{i+1}...x_{N})$$

= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | x_{1}...x_{i}, \pi_{i} = k)
= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | \pi_{i} = k)

Forward, $f_k(i)$ Backward, $b_k(i)$

The Backward Algorithm – derivation

Define the backward probability:

$$\begin{split} b_{k}(i) &= \mathsf{P}(\mathsf{x}_{i+1}...\mathsf{x}_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+1}, \mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+1}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\mathsf{I}} \sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+1}, \mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+1} = \mathsf{I}, \, \pi_{i+2}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\mathsf{I}} \mathsf{e}_{\mathsf{I}}(\mathsf{x}_{i+1}) \mathsf{a}_{\mathsf{k}\mathsf{I}} \underbrace{\sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+2}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i+1} = \mathsf{I})}_{\mathsf{I}} \\ &= \sum_{\mathsf{I}} \mathsf{e}_{\mathsf{I}}(\mathsf{x}_{i+1}) \mathsf{a}_{\mathsf{k}\mathsf{I}} \underbrace{\mathsf{b}_{\mathsf{I}}(\mathsf{i}+1)}_{\mathsf{I}} \end{split}$$

Calculate total end probability recursively

Assume we know b₁ for the next time step (i+1)

The Backward Algorithm

 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input:
$$x = x1....xN$$

Initialization:

 $b_k(N) = a_{k0}$, for all k

Iteration:

 $b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)$

Termination:

 $P(x) = \Sigma_{l} a_{0l} e_{l}(x_{1}) b_{l}(1)$

In practice:

Sum of log scores is difficult

- \rightarrow approximate exp(1+p+q)
- \rightarrow scaling of probabilities

Running time and space:

Time: O(K²N) Space: O(K)

Putting it all together: Posterior decoding

 \mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3 \mathbf{X}_N

- $P(k) = P(\pi_i = k | x) = f_k(i) b_k(i) / P(x)$
 - Probability that ith state is k, given all emissions x
- Posterior decoding
 - Find the most likely state at position i over all possible hidden paths given the observed sequence x
 - $-\pi_i^{n} = \operatorname{argmax}_k P(\pi_i = k \mid x)$
- - For classification, more informative than Viterbi path π^*
 - More refined measure of "which hidden states" generated x
 - However, it may give an invalid sequence of states
 - Not all $j \rightarrow k$ transitions may be possible

Goals for today: HMMs, part II

- 1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x,\pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ (alg 3)
 - Forward algorithm: Find P(x), over all paths (alg 2)
- 2. Increasing the 'state' space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM
- 3. Posterior decoding: Another way of 'parsing'
 - Find most likely state π_i , sum over all possible paths
- 4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
orinç	Ρ(x,π)	$P(x) = \Sigma_{\pi} P(x,\pi)$
s S	Prob of a path, emissions	Prob of emissions, over all paths
D	3. Viterbi decoding	4. Posterior decoding
sodin	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$
Deo	Most likely path	Path containing the most likely state at any time point.
δ	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax} P(x, \pi \Lambda)$	6. Unsupervised learning
arnin	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Ð	Viterbi training, best path	Baum-Welch training, over all paths

Learning: How to train an HMM

Transition probabilities

e.g. $P(P_{i+1}|B_i)$ – the probability of entering a pathogenicity island from background DNA

Emission probabilities

i.e. the nucleotide frequencies for background DNA and pathogenicity islands

Two learning scenarios

Case 1. Estimation when the "right answer" is known

Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

Case 2. Estimation when the "right answer" is unknown

Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

QUESTION: Update the parameters θ of the model to maximize $P(x|\theta)$

Two types of learning: Supervised / Unsupervised

5. Supervised learning

- infer model parameters given labeled training data
- GIVEN:
 - a HMM M, with unspecified transition/emission probs.
 - labeled sequence x,
- FIND:
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
- ➔ Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning

infer model parameters given unlabelled training data

- GIVEN:
 - a HMM M, with unspecified transition/emission probs.
 - unlabeled sequence x,
- FIND:
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
- ➔ Viterbi training:

guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

➔ Baum-Welch training:

guess parameters, sum over all paths (#4), update parameters (#5), iterate

5: Supervised learning

Estimate model parameters based on **labeled** training data

Case 1. When the right answer is known

Given $x = x_1...x_N$ for which the true $\pi = \pi_1...\pi_N$ is known,

Define:

A _{kl}	= # times k \rightarrow I transition occurs in π
E _k (b)	= # times state k in π emits b in x

We can show that the maximum likelihood parameters $\boldsymbol{\theta}$ are:

$$a_{kl} = \frac{A_{kl}}{\sum_{i} A_{ki}} \qquad e_{k}(b) = \frac{E_{k}(b)}{\sum_{c} E_{k}(c)}$$

→ Learning From Labelled Data → Maximum Likelihood Estimation

If we have a sequence that has islands marked, we can simply count

Case 1. When the right answer is known

Intuition: When we know the underlying states, Best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:

Given little data, there may be <u>overfitting</u>: $P(x|\theta)$ is maximized, but θ is unreasonable **0 probabilities – VERY BAD**

Example:

Given 10 nucleotides, we observe

x =	С,	A,	G,	G,	Τ,	С,	С,	A,	Τ,	С
$\pi =$	P,	Ρ								

Then:

$$a_{PP} = 1; a_{PB} = 0$$

 $e_P(A) = .2;$
 $e_P(C) = .4;$
 $e_P(G) = .2;$
 $e_P(T) = .2$

Pseudocounts

Solution for small training sets:

Add pseudocounts

 A_{kl} = # times k \rightarrow I transition occurs in π + r_{kl} $E_k(b)$ = # times state k in π emits b in x+ $r_k(b)$

 r_{kl} , $r_k(b)$ are pseudocounts representing our prior belief

Larger pseudocounts \Rightarrow Strong priof belief

Small pseudocounts ($\epsilon < 1$): just to avoid 0 probabilities

Example: Training Markov Chains for CpG islands

Α

.180

.171

.161

.079

Α

.300

.322

.248

.177

÷

Α

С

G

Т

Α

С

G

Т

С

.274

.368

.339

.355

С

.205

.298

.246

.239

G

.426

.274

.375

.384

G

.285

.078

.298

.292

Т

.120

.188

.125

.182

Т

.210

.302

.208

.292

- Training Set:
 - set of DNA sequences w/ known CpG islands
- Derive two Markov chain models:
 - '+' model: from the CpG islands
 - '-' model: from the remainder of sequence
 - Transition probabilities for each model:

$$a_{st}^{+} = \frac{c_{st}^{+}}{\sum_{t'} c_{st'}^{+}}$$

 c_{st}^+

 C_{st}

is the number of times letter *t* followed letter *s* <u>inside</u> the CpG islands

is the number of times letter *t* followed letter *s* <u>outside</u> the CpG islands

6: Unsupervised learning

Estimate model parameters based on **unlabeled** training data

Unlabelled Data

How do we know how to count?

Unlabeled Data

An idea:

- 1. Imagine we start with some parameters
- 2. We *could* calculate the most likely path, P*, given those parameters and S
- 3. We *could* then use P* to update our parameters by maximum likelihood
- 4. And iterate (to convergence)

 P(L_{i+1}|L_i)⁰
 P(S|B)⁰
 P(S|P)⁰

 P(L_{i+1}|L_i)¹
 P(S|B)¹
 P(S|P)¹

 P(L_{i+1}|L_i)²
 P(S|B)²
 P(S|P)²

 ...
 ...

 P(L_{i+1}|L_i)^K
 P(S|B)^K
 P(S|P)^K

Learning case 2. When the right answer is unknown

We don't know the true A_{kl} , $E_k(b)$

Idea:

- We estimate our "best guess" on what A_{kl}, E_k(b) are (M step, maximum-likelihood estimation)
- We update the probabilistic parse of our sequence, based on these parameters (E step, expected probability of being in each state given parameters)
- We repeat

Two settings:

- Simple: Viterbi training (best guest = best path)
- Correct: Expectation maximization (all paths, weighted)

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths			
orinç	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$			
Sc	Prob of a path, emissions	Prob of emissions, over all paths			
Decoding	3. Viterbi decoding	4. Posterior decoding			
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{*} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k \mid x)\}$			
	Most likely path	Path containing the most likely state at any time point.			
D	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax} P(x, \pi \Lambda)$	7. Unsupervised learning			
rnin	6. Unsupervised learning.	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$			
Lea	Viterbi training, best path	Baum-Welch training, over all paths			

Simple casae: Viterbi Training

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Perform Viterbi, to find π^*
- 2. Calculate A_{kl} , $E_k(b)$ according to π^* + pseudocounts
- 3. Calculate the new parameters a_{kl} , $e_k(b)$

Until convergence

Notes:

- Convergence to local maximum guaranteed. Why?
- Does not maximize $P(x | \theta)$
- In general, worse performance than Baum-Welch

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths			
orinç	Ρ(x,π)	$P(x) = \Sigma_{\pi} P(x,\pi)$			
ы С	Prob of a path, emissions	Prob of emissions, over all paths			
Decoding	3. Viterbi decoding	4. Posterior decoding			
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{*} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k \mid x)\}$			
	Most likely path	Path containing the most likely state at any time point.			
σ	5. Supervised learning, given π	6. Unsupervised learning			
arninç	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \max_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$			
Ŭ	Viterbi training, best path	Baum-Welch training, over all paths			

Expectation Maximization (EM)

The basic idea is the same:

1.Use model to estimate missing data (E step) 2.Use estimate to update model (M step) 3.Repeat until convergence

EM is a general approach for learning models (ML estimation) when there is "missing data" Widely used in computational biology

EM pervasive in computational biology Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

Expectation Maximization (EM)

1. Initialize parameters randomly

2. E Step Estimate expected probability of hidden labels, Q, given current (latest) parameters and observed (unchanging) sequence

$$Q = P(Labels | S, params^{t-1})$$

3. M Step Choose new <u>maximum likelihood</u> parameters over probability distribution Q, given current probabilistic label assignments

$$params^{t} = \underset{params}{\operatorname{arg\,max}} E_{Q} \lfloor \log P(S, labels \mid params^{t-1}) \rfloor$$

4. Iterate

P(S|Model) guaranteed to increase each iteration

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given $x = x_1...x_N$ for which the true $\pi = \pi_1...\pi_N$ is unknown,

We can get to a provably more likely parameter set $\boldsymbol{\theta}$

Principle: EXPECTATION MAXIMIZATION

- 1. Estimate probabilistic parse based on parameters (E step)
- 2. Update parameters A_{kl} , E_k based on probabilistic parse (M step)
- 3. Repeat 1 & 2, until convergence

Estimating probabilistic parse given params (E step)

To estimate A_{kl}:

At each position i:

Find probability transition $k \rightarrow I$ is used:

$$P(\pi_{i} = k, \pi_{i+1} = I \mid x) = [1/P(x)] \times P(\pi_{i} = k, \pi_{i+1} = I, x_{1}...x_{N}) = Q/P(x)$$
where $Q = P(x_{1}...x_{i}, \pi_{i} = k, \pi_{i+1} = I, x_{i+1}...x_{N}) = P(\pi_{i+1} = I, \pi_{i+1} = I) = P(\pi_{i+1} = I) = P(\pi_{i+1}$

So: $P(\pi_i = k, \pi_{i+1} = I \mid x, \theta) = \frac{P(x \mid \theta)}{P(x \mid \theta)}$ (For one such transition, at time step $i \rightarrow i+1$)

New parameters given probabilistic parse (M step)

(Sum over all $k \rightarrow I$ transitions, at any time step i) So,

$$A_{kl} = \sum_{i} P(\pi_i = k, \pi_{i+1} = l \mid x, \theta) = \sum_{i} \frac{f_k(i) |a_{kl}| e_l(x_{i+1}) |b_l(i+1)|}{P(x \mid \theta)}$$

Similarly,

$$E_{k}(b) = [1/P(x)]\sum_{i \mid xi = b} f_{k}(i) b_{k}(i)$$

Dealing with multiple training sequences

(Sum over all training seqs, all $k \rightarrow I$ transitions, all time steps i)

If we have several training sequences, x^1 , ..., x^M , each of length N,

$$A_{kl} = \sum_{\mathbf{X}} \sum_{i} P(\pi_{i} = k, \pi_{i+1} = l \mid \mathbf{x}, \theta) = \sum_{\mathbf{X}} \sum_{i} \frac{f_{k}(i) a_{kl} e_{l}(\mathbf{x}_{i+1}) b_{l}(i+1)}{P(\mathbf{x} \mid \theta)}$$

Similarly,

$$E_{k}(b) = \sum_{X} (1/P(x)) \sum_{\{i \mid x_{i} = b\}} f_{k}(i) b_{k}(i)$$

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Forward
- 2. Backward
- 3. \rightarrow Calculate new log-likelihood P(x | θ) (E step)
- 4. Calculate A_{kl} , $E_k(b)$
- 5. \rightarrow Calculate new model parameters a_{kl} , $e_k(b)$ (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm – comments

Time Complexity:

iterations \times O(K²N)

• Guaranteed to increase the log likelihood of the model

 $\mathsf{P}(\theta \mid \mathsf{x}) = \mathsf{P}(\mathsf{x}, \theta) / \mathsf{P}(\mathsf{x}) = \mathsf{P}(\mathsf{x} \mid \theta) / (\mathsf{P}(\mathsf{x}) \mathsf{P}(\theta))$

• Not guaranteed to find <u>globally</u> best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model:
 Overtraining

	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths		
Scoring	P(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$		
	Prob of a path, emissions	Prob of emissions, over all paths		
Decoding	3. Viterbi decoding	4. Posterior decoding		
	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$π^{*} = {π_i π_i = argmax_k Σ_π P(π_i = k x)}$		
	Most likely path	Path containing the most likely state at any time point.		
Ð	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$	6. Unsupervised learning		
rnin	 6. Unsupervised learning. Δ* = argmax max P(x πΙΔ) 	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$		
Lea	Viterbi training, best path	Baum-Welch training, over all paths		

Examples of HMMs for genome annotation

Detection of GC-rich regions	Detection of CpG-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
2 states, different nucleotide composition	8 states, 4 each +/-, different transition probabilities	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
GC-rich / AT- rich	CpG-rich / CpG-poor	Conserved / non- conserved	Coding exon / non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, *(+/- strand)	Enhancer / promoter / transcribed / repressed / repetitive
Nucleotides	Di- Nucleotides	Level of conservation	Triplets of nucleotides	64x64 matrix of codon substitution frequencies	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

What have we learned ?

- Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (#0)
- Scoring: Finding the likelihood of a given sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (#1)
 - Without specifying a path, total probability of generating x
 - Sum probabilities over all paths
 - Forward algorithm (#3)

• Decoding: Finding the most likely path, given a sequence

- What is the most likely path generating entire sequence?
 - Viterbi algorithm (#2)
- What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)

• Learning: Estimating HMM parameters from training data

- When state sequence is known
 - Simply compute maximum likelihood A and E (#5a)
- When state sequence is not known
 - Viterbi training: Iterative estimation of best path / frequencies (#5b)
 - Baum-Welch: Iterative estimation over all paths / frequencies (#6)

Goals for today: HMMs, part II

- 1. Review: Basics and three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Calculating likelihoods $P(x,\pi)$ (algorithm 1)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ (alg 3)
 - Forward algorithm: Find P(x), over all paths (alg 2)
- 2. Increasing the 'state' space / adding memory
 - Finding GC-rich regions vs. finding CpG islands
 - Gene structures GENSCAN, chromatin ChromHMM
- 3. Posterior decoding: Another way of 'parsing'
 - Find most likely state π_i , sum over all possible paths
- 4. Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x \rightarrow annotation + params

6.047 / 6.878 / HST.507 Computational Biology Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.