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Module 1: Aligning and modeling genomes 

• Module 1: Computational foundations 
– Dynamic programming: exploring exponential spaces in poly-time 
– Introduce Hidden Markov Models (HMMs): Central tool in CS 
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring 

• This week: Sequence alignment / comparative genomics 
– Local/global alignment: infer nucleotide-level evolutionary events 
– Database search: scan for regions that may have common ancestry 

• Next week: Modeling genomes / exon / CpG island finding 
– Modeling class of elements, recognizing members of a class 
– Application to gene finding, conservation islands, CpG islands 
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures (GENSCAN), chromatin (ChromHMM) 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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Markov chains and Hidden Markov Models (HMMs) 

• What you see is what you get: 
next state only depends on 
current state (no memory) 

Sun 

Rain 

Clouds 

Snow 

• Hidden state of the world determines 
emission probabilities 

• State transitions are a Markov chain 

hidden 

observed 

All observed 

Summer Fall Winter Spring 

Transitions 

Emissions 

Transitions 

• Markov Chain 
– Q: states 
– p:  initial state probabilities 
– A:  transition probabilities 

• HMM 
– Q: states, p: initial, A: transitions 
– V: observations 
– E: emission probabilities 
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HMM nomenclature for this course 

• Vector x = Sequence of observations 

• Vector π = Hidden path (sequence of hidden states) 

• Transition matrix A=akl=probability of kl state transition 

• Emission vector E=ek(xi) = prob. of observing xi from state k 

• Bayes’s rule: Use P(xi|πi=k) to estimate P(πi=k|xi) 

Fall Winter Spring 

Emissions: ek(xi)=P(xi|πi=k) 

Transitions: akl=P(πi=l|πi-1=k) Summer π= 

x= 

πi 

xi 

Transition probability 
from state k to state l 

Emission probability of 
symbol xi from state k 
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Example: The Dishonest Casino 

 
A casino has two dice: 
• Fair die 
 P(1) = P(2) = P(3) = P(5) = P(6) = 1/6 
• Loaded die 
 P(1) = P(2) = P(3) = P(4) = P(5) = 1/10 
 P(6) = 1/2 
Casino player switches between fair and loaded 

die on average once every 20 turns 
 
Game: 
1. You bet $1 
2. You roll (always with a fair die) 
3. Casino player rolls (maybe with fair die, 

maybe with loaded die) 
4. Highest number wins $2 

Slide credit: Serafim Batzoglou 
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Examples of HMMs for genome annotation 
Application Detection 

of GC-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

Topology / 
Transitions 

2 states, 
different 
nucleotide 
composition 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

Hidden 
States / 
Annotation 

GC-rich / AT-
rich 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Emissions / 
Observatio
ns 

Nucleotides Level of 
conservation 

Triplets of 
nucleotides 

Nucleotide 
triplets, 
conservation 
levels 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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The main questions on HMMs 
1. Scoring x, one path = Joint probability of a sequence and a path, given the model 

– GIVEN  a HMM M,  a path , and a sequence x,  
– FIND  Prob[ x,  | M ] 
 “Running the model”, simply multiply emission and transition probabilities 
 Application:  “all promoter” vs. “all backgorund” comparisons 

2. Scoring x, all paths = total probability of a sequence, summed across all paths 
– GIVEN a HMM M,  a sequence x 
– FIND the total probability P[x | M] summed across all paths 
 Forward algorithm, sum score over all paths (same result as backward) 

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states 
– GIVEN a HMM M,  and a sequence x, 
– FIND the sequence * of states that maximizes P[ x,  | M ] 
 Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path 

4. Posterior decoding = total prob that emission xi came from state k, across all paths 
– GIVEN  a HMM M,  a sequence x 
– FIND the total probability P[i = k | x, M) 
 Posterior decoding: run forward & backward algorithms to & from state I =k 

5. Supervised learning = optimize parameters of a model given training data 
– GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x, 
– FIND parameters  = (ei, aij) that maximize P[ x |  ] 
 Simply count frequency of each emission and transition observed in the training data 

6. Unsupervised learning = optimize parameters of a model given training data 
– GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x, 
– FIND parameters  = (ei, aij) that maximize P[ x |  ] 
 Viterbi training:  guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate 
 Baum-Welch training:  guess, sum over all emissions/transitions (#4), update (#5), iterate 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D

ec
od

in
g 

Sc
or
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g 

Le
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ng

 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Probability of given path p, emissions x 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x2 x3 xK 

2 
1 

K 

2 

x1 

• P(x,) = a01
 * Πi ei

(xi)    aii+1 

start emission transition 

x is the  
(observed) 
sequence 

π is the  
(hidden) path 

es(xi) 

ast 

Courtesy of Serafim Batzoglou. Used with permission.
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Example: One particular P vs. B assignment 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

P P 

1 0 2 1 3 2 7

7

3 6 2 2

( | ) ( | ) ( | ) ( | ) ( | ) ( | )... ( | )

(0.85) (0.25) (0.75) (0.42) 0.30 0.15

6.7 10

P P G B P B B P C B P B B P A B P P B P C B





     

 

B B B B B 
0.85 

0.25 

0.85 

0.15 0.25 

0.25 0.25 0.42 0.42 0.30 0.25 0.25 

0.85 

P P P 
0.75 0.75 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Finding the most likely path 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x2 x3 xK 

2 
1 

K 

2 

x1 

• Find path * that maximizes total joint probability P[ x,  ] 

• argmaxπP(x,) =argmaxπ a01
 * Πi ei

(xi)    aii+1 

start emission transition 
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Calculate maximum P(x,) recursively 

• Assume we know Vj for the previous time step (i-1) 
 

• Calculate Vk(i) =     ek(xi)   *   maxj (   Vj(i-1)     ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
Vj(i-1) 

Vk(i) hidden 
states 

observations 

this emission Transition 
from state j 

max ending 
in state j at step i 

all possible previous states j 

current max 

Viterbi algortithm 
Define Vk(i) = Probability of the most likely path through state i=k 
Compute Vk(i+1) recursively, as a function of maxk’ { Vk’(i) } 
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The Viterbi Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 V0(0)=1, Vk(0) = 0, for all k > 0 
 

Iteration: 
 Vk(i) = eK(xi)  maxj ajk Vj(i-1)  
 

Termination: 
 P(x, *) = maxk Vk(N) 

Traceback: 
 Follow max pointers back 
 
In practice: 
 Use log scores for computation 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(KN) 

State 1 

2 

K 

Vk(i) 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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P(x)  Prob that model emits x, sum over all paths 

Given a sequence x, 
What is the probability that x was generated by the model (using any path)? 

– P(x) = Σπ P(x,π) 
• Challenge: exponential number of paths 

– Sum over all paths, weighing the path probability, and the emission probs 
– Prob of emitting sequence: use individual emission probs from each state 
– Prob of path: use both emission and transition prob, based on previous path 

1 
2 

K 
… 

1 
2 

K 
… 

1 
2 

K 
… 

… 

… 

… 

1 
2 

K 
… 

x1 x2 x3 xn 

2 
1 

K 

2 
0 

e2(x1) 

a02 

• P(x) = Σπ  a01
 * Πi ei

(xi)    aii+1 

start emission transition 
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Calculate total probability Σπ P(x,) recursively 

• Assume we know fj for the previous time step (i-1) 
 

• Calculate  fk(i) =     ek(xi)   *   sumj (   fj(i-1)        ajk    ) 

xi 

ek 

k 
j 

ajk … 
… 

xi-1 

… 
fj(i-1) 

fk(i) hidden 
states 

observations 

this emission transition 
from state j 

sum ending 
in state j at step i 

Sum over all previous states j 

current sum 
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The Forward Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization: 
 f0(0)=1, fk(0) = 0, for all k > 0 
 

Iteration: 
 fk(i) = eK(xi)  sumj ajk fj(i-1)  
 

Termination: 
 P(x, *) = sumk fk(N) 

In practice: 
 Sum of log scores is difficult 
  approximate exp(1+p+q) 
  scaling of probabilities 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(K) 

State 1 

2 

K 

fk(i) 
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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Increasing the state space  
(remembering more) 

HMM1:  Promoters = only Cs and Gs matter 
HMM2: Promoters = it’s actually CpGs that matter 

(di-nucleotides, remember previous nucleotide) 
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Increasing the state of the system (looking back) 

• Markov Models are memory-less 
– In other words, all memory is encoded in the states 
– To remember additional information, augment state 

• A two-state HMM has minimal memory 
– Two states: GC-rich vs. equal probability 
– State, emissions, only depend on current state 
– Current state only encodes one previous nucleotide 

• How do you count di-nucleotide frequencies? 
– CpG islands: di-nucleotides 
– Codon triplets: tri-nucleotides 
– Di-codon frequencies: six nucleotides 

 Expanding the number of states 

+ - 

A: .2 

C: .3 

G: .3 

T: .2 

A: 1/4 

C: 1/4 

G: 1/4 

T: 1/4 

a++ a-- a+- 

a-+ 
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Remember previous nucleotide: expand both states 

A
+  

T
+  

G
+  

C
+  

A: 0 
C

: 0 
G

: 1 
T: 0 

A: 1 
C

: 0 
G

: 0 
T: 0 

A: 0 
C

: 1 
G

: 0 
T: 0 

A: 0 
C

: 0 
G

: 0 
T: 1 

CpG+ CpG- 

A: .1 

C: .3 

G: .4 

T: .2 

A: 1/4 

C: 1/4 

G: 1/4 

T: 1/4 

aPP aBB aPB 

aBP 

A +
 

T +
 

G
+ 

C
+ 

A:
 0

 
C

: 0
 

G
: 1

 
T:

 0
 

A:
 1

 
C

: 0
 

G
: 0

 
T:

 0
 

A:
 0

 
C

: 1
 

G
: 0

 
T:

 0
 

A:
 0

 
C

: 0
 

G
: 0

 
T:

 1
 

“Memory” of previous 
nucleotide is encoded 
in the current state.  
 
GC-rich: 4 states 
Background: 4 states 
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HMM for CpG islands 

• A single model combines two Markov 
chains, each of four nucleotides: 
– ‘+’ states: A+, C+, G+, T+ 

• Emit symbols: A, C, G, T in CpG islands 
– ‘-’ states: A-, C-, G-, T- 

• Emit symbols: A, C, G, T in non-islands 

• Emission probabilities distinct for the ‘+’ 
and the ‘-’ states 
– Infer most likely set of states, giving rise 

to observed emissions 
 ‘Paint’ the sequence with + and - states 

A+ T+ G+ C+ 

A- T- G- C- 

A: 0 

C: 0 

G: 1 

T: 0 

A: 1 

C: 0 

G: 0 

T: 0 

A: 0 

C: 1 

G: 0 

T: 0 

A: 0 

C: 0 

G: 0 

T: 1 

A: 0 

C: 0 

G: 1 

T: 0 

A: 1 

C: 0 

G: 0 

T: 0 

A: 0 

C: 1 

G: 0 

T: 0 

A: 0 

C: 0 

G: 0 

T: 1 

Why we need so many states… 
In our simple GC-content example, we only had 2 states (+|-) 
Why do we need 8 states here:  4 CpG+ / 4 CpG-  ? 
 Encode ‘memory’ of previous state: nucleotide transitions 
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Training emission parameters for CpG+/CpG- states 
• Count di-nucleotide frequencies:  

– 16 possible di-nucleotides. 16 transition parameters.  
– Alternative:  16 states, each emitting di-nucleotide 

• Derive two Markov chain models: 
– ‘+’ model: from the CpG islands 
– ‘-’ model: from the remainder of sequence  

• Transition probabilities for each model: 
– Encode differences in di-nucleotide frequencies 

 
 
 
 

+ A C G T 
A .180 .274 .426 .120 

C .171 .368 .274 .188 

G .161 .339 .375 .125 

T .079 .355 .384 .182 

A T 

G C 

aGT aAC 

aGC 

aAT 

- A C G T 
A .300 .205 .285 .210 

C .322 .298 .078 .302 

G .248 .246 .298 .208 

T .177 .239 .292 .292 
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Examples of HMMs for genome annotation 
Detection 
of GC-rich 
regions 

Detection 
of CpG-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

2 states, 
different 
nucleotide 
composition 

8 states,  
4 each +/-, 
different 
transition 
probabilities 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

GC-rich / AT-
rich 

CpG-rich / 
CpG-poor 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Nucleotides Di-
Nucleotides 

Level of 
conservation 

Triplets of 
nucleotides 

64x64 matrix 
of codon 
substitution 
frequencies 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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HMM architecture matters: Protein-coding genes 

• Gene vs. Intergenic 
• Start & Stop in/out 
• UTR: 5’ and 3’ end 
• Exons, Introns 
• Remembering frame 

– E0,E1,E2 
– I0,I1,I2 

• Sequence patterns 
to transition between 
states: 
– ATG, TAG, 

Acceptor/Donor, 
TATA, AATAA 

28
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Chromatin State: Emission & Transition Matrices 

Ernst and Kellis, Nature Biotech 2010, Nature 2011, Nature Methods 2012 

• Emission matrix:  
• Multi-variate HMM 
• Emits vector of values 

• Transition matrix:  
• Learn spatial relationships 
• No a-priori ‘gene’ structure 

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative
Commons license. For more information,see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for
systematic annotation of the human genome.“                                                        Nature Biotechnology 28, no. 8 (2010): 817-825.
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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4. Decoding, all paths 

Find the likelihood an emission xi is 
generated by a state 
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Calculate most probable label at a single position 

• Calculate most probable label, L*
i , at each position i 

• Do this for all N positions gives us {L*
1, L*

2, L*
3…. L*

N} 
• How much information have we observed? Three settings:  

– Observed nothing: Use prior information 
– Observed only character at position i:  Prior + emission probability 
– Observed entire sequence: Posterior decoding 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

π: 

x: 

P P P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

P P 
Sum over all paths 

P(Labeli=B|x) 
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Calculate P(π7= CpG+ | x7=G) 

• With no knowledge (no characters) 
– Simply time spent in markov chain states 
– P( πi=k ) =  most likely state (prior) 

 
• With very little knowledge (just that character) 

– Time spent, adjusted for different emission probs. 
– Use Bayes rule to change inference directionality 
– P( πi=k | xi=G ) = P(πι=κ) * P(xi=G|πi=k) / P(xi=G) 

 
• With knowledge of entire sequence (all characters) 

– P( πi=k | x=AGCGCG…GATTATCGTCGTA) 
– Sum over all paths that emit ‘G’ at position 7 
 Posterior decoding 
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Motivation for the Backward Algorithm 

We want to compute 
 
  P(i = k | x), the probability distribution on the ith position, given x 
 
We start by computing 
 
P(i = k, x) = P(x1…xi, i = k, xi+1…xN) 
       = P(x1…xi, i = k) P(xi+1…xN | x1…xi, i = k)  
       = P(x1…xi, i = k) P(xi+1…xN | i = k)  

Forward, fk(i)  Backward, bk(i)  
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The Backward Algorithm – derivation 
Define the backward probability: 
 
 bk(i) = P(xi+1…xN | i = k)  
        = i+1…N P(xi+1,xi+2, …, xN, i+1, …, N | i = k) 
        = l i+1…N P(xi+1,xi+2, …, xN, i+1 = l, i+2, …, N | i = k) 
        = l el(xi+1) akl i+1…N P(xi+2, …, xN, i+2, …, N | i+1 = l) 
        = l el(xi+1) akl bl(i+1) 
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Calculate total end probability recursively 

• Assume we know bl for the next time step (i+1) 
 

• Calculate  bk(i)  =    suml (   el(xi+1)       akl         bl(i+1)  ) 

xi+1 

el 

l 
k 

akl 

… 

… 

xi 

… bk(i) 
bl(i+1) 

hidden 
states 

observations 

next 
emission 

transition 
to next state 

prob sum from 
state l to end 

sum over all possible next states 

current max 
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The Backward Algorithm 

x1   x2   x3 ………………………………………..xN 

Input: x = x1……xN 
 

Initialization:  
 bk(N) = ak0, for all k 
 

Iteration: 
 bk(i) = l el(xi+1) akl bl(i+1) 
 

Termination: 
 P(x) = l a0l el(x1) bl(1) 

In practice: 
 Sum of log scores is difficult 
  approximate exp(1+p+q) 
  scaling of probabilities 
 
Running time and space:  
 Time:    O(K2N) 
 Space:  O(K) 

State 1 

2 

K 

bk(i) 

38



Putting it all together:  Posterior decoding 

• P(k) = P( πi=k | x ) = fk(i)*bk(i) / P(x) 
– Probability that ith state is k, given all emissions x 

• Posterior decoding 
– Find the most likely state at position i over all possible hidden paths 

given the observed sequence x 
– ^

i = argmaxk P(i = k | x) 
• Posterior decoding ‘path’ ^

i 
– For classification, more informative than Viterbi path * 

• More refined measure of “which hidden states” generated x 
– However, it may give an invalid sequence of states 

• Not all jk transitions may be possible 

x1   x2   x3 ………………………………………..xN 

State 1 

2 

K 

P(k) 
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Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D

ec
od

in
g 

Sc
or

in
g 
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ng

 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Learning: How to train an HMM 

Transition probabilities 
e.g. P(Pi+1|Bi) – the 
probability of entering a 
pathogenicity island from 
background DNA 

 
Emission probabilities 

i.e. the nucleotide 
frequencies for 
background DNA and 
pathogenicity islands 

B P 

P(S|P) P(S|B) 

P(Li+1|Li) 
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Two learning scenarios 

Case 1. Estimation when the “right answer” is known 
 
Examples:  
 GIVEN: a genomic region x = x1…x1,000,000 where we have good  

  (experimental) annotations of the CpG islands 
  
  

Case 2. Estimation when the “right answer” is unknown 
 
Examples: 
 
 GIVEN: the porcupine genome; we don’t know how frequent are the  

  CpG islands there, neither do we know their composition 
 

 
QUESTION: Update the parameters  of the model to maximize P(x|) 
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Two types of learning:  Supervised / Unsupervised 
5. Supervised learning 
 infer model parameters given labeled training data 

– GIVEN: 
• a HMM M, with unspecified transition/emission probs. 
• labeled sequence x, 

– FIND: 
• parameters  = (Ei, Aij) that maximize P[ x |  ] 

 Simply count frequency of each emission and transition, 
 as observed in the training data 

6. Unsupervised learning 
 infer model parameters given unlabelled training data 

– GIVEN:  
• a HMM M, with unspecified transition/emission probs. 
• unlabeled sequence x, 

– FIND:  
• parameters  = (Ei, Aij) that maximize P[ x |  ] 

 Viterbi training:   
guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate 

 Baum-Welch training:   
guess parameters, sum over all paths (#4), update parameters (#5), iterate 44



5: Supervised learning 

Estimate model parameters  
based on labeled training data 
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Case 1. When the right answer is known 
Given x = x1…xN 
for which the true  = 1…N is known, 
 
Define: 
 
 Akl   = # times kl transition occurs in  
 Ek(b)  = # times state k in  emits b in x 
 
 
We can show that the maximum likelihood parameters  are: 
 
            Akl            Ek(b) 
  akl = –––––   ek(b) =   –––––––  
          i  Aki      c  Ek(c) 
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Learning From Labelled Data 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

If we have a sequence that has islands marked, we can simply count 

A:  
T:   
G:  
C:  

A:      1/5 
T:        0 
G:      2/5 
C:      2/5 

P(S|P) P(S|B) P(Li+1|Li) 
Bi+1 Pi+1 End 

Bi 3/5 1/5 1/5 

Pi 1/3 2/3 0 

Start 1 0 0 

End start 

P 

B B B B B 

P 

ETC.. 

 Maximum Likelihood Estimation 

! 
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Case 1. When the right answer is known 
Intuition: When we know the underlying states, 
          Best estimate is the average frequency of        
          transitions & emissions that occur in the training data 
 
Drawback:  
 Given little data, there may be overfitting: 
 P(x|) is maximized, but  is unreasonable 
 0 probabilities – VERY BAD 
 
Example: 
  Given 10 nucleotides, we observe  
   x = C, A, G, G, T, C, C, A, T, C 

    = P, P, P, p, p, P, P, P, P, P 

  Then: 
   aPP = 1;   aPB = 0 
   eP(A) = .2;  
   eP(C) = .4;  
   eP(G) = .2;  
   eP(T) =.2    
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Pseudocounts 
Solution for small training sets: 
 
 Add pseudocounts 
 
 Akl   = # times kl transition occurs in  + rkl 
 Ek(b)  = # times state k in  emits b in x + rk(b) 
 
rkl, rk(b) are pseudocounts representing our prior belief 
 
Larger pseudocounts  Strong priof belief 
 
Small pseudocounts ( < 1): just to avoid 0 probabilities  

49



Example: Training Markov Chains for CpG islands 

• Training Set:  
– set of DNA sequences w/ known CpG islands 

• Derive two Markov chain models: 
– ‘+’ model: from the CpG islands 
– ‘-’ model: from the remainder of sequence  

• Transition probabilities for each model: 
 
 
 
 

 


 

t' st'

st
st

c

c
a


stc is the number of times 

letter t  followed letter s 
inside the CpG islands 

+ A C G T 
A .180 .274 .426 .120 

C .171 .368 .274 .188 

G .161 .339 .375 .125 

T .079 .355 .384 .182 

A T 

G C 

aG

T 
aA

C 
aGC 

aAT 

 


 

t' st'

st
st

c

c
a



stc is the number of times 
letter t  followed letter s 
outside the CpG islands 

- A C G T 
A .300 .205 .285 .210 

C .322 .298 .078 .302 

G .248 .246 .298 .208 

T .177 .239 .292 .292 
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6: Unsupervised learning 

Estimate model parameters  
based on unlabeled training data 
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Unlabelled Data 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

How do we know how to count? 

A:  
T:   
G:  
C:  

A: 
T:         
G: 
C: 

P(S|P) P(S|B) P(Li+1|Li) 
Bi+1 Pi+1 End 

Bi 

Pi ? 
Start 

End start 

P P 

? 
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Unlabeled Data 

An idea: 
1. Imagine we start with some parameters 
2. We could calculate the most likely path, 

P*, given those parameters and S 
3. We could then use P* to update our 

parameters by maximum likelihood 
4. And iterate (to convergence) 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

P(S|P)0 P(S|B)0 P(Li+1|Li)0 

End start 

P P 

P(S|P)1 P(S|B)1 P(Li+1|Li)1 

P(S|P)2 P(S|B)2 P(Li+1|Li)2 

P(S|P)K P(S|B)K P(Li+1|Li)K 

… 

B B B B B B B B B B B B B 

P P P 
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Learning case 2. When the right answer is unknown 

We don’t know the true Akl, Ek(b) 
 
Idea: 
• We estimate our “best guess” on what Akl, Ek(b) are 

(M step, maximum-likelihood estimation) 
• We update the probabilistic parse of our sequence, 

based on these parameters (E step, expected 
probability of being in each state given parameters) 

• We repeat 
 

Two settings:  
• Simple: Viterbi training (best guest = best path) 
• Correct: Expectation maximization (all paths, weighted) 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

7.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Simple casae: Viterbi Training 

Initialization: 
Pick the best-guess for model parameters 
  (or arbitrary) 
Iteration: 

1. Perform Viterbi, to find * 
2. Calculate Akl, Ek(b) according to * + pseudocounts 
3. Calculate the new parameters akl, ek(b) 

Until convergence 
Notes: 

– Convergence to local maximum guaranteed. Why? 
– Does not maximize P(x | ) 
– In general, worse performance than Baum-Welch 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
D
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Expectation Maximization (EM) 

EM pervasive in computational biology 
  Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs) 

The basic idea is the same: 
 

1.Use model to estimate missing data (E step) 
2.Use estimate to update model (M step) 

3.Repeat until convergence 
 

EM is a general approach for learning models  
(ML estimation) when there is “missing data” 

Widely used in computational biology 
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1. Initialize parameters randomly 
 
 

2. E Step Estimate expected probability of hidden labels, Q, given current 
(latest) parameters and observed (unchanging) sequence 
 
 

3. M Step Choose new maximum likelihood parameters over 
probability distribution Q, given current probabilistic label assignments 
 
 

4. Iterate 

Expectation Maximization (EM) 

( | , )1Q P Labels S paramst 

1arg max log ( , | )t t

Q
params

params E P S labels params    

P(S|Model) guaranteed to increase each iteration 
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Case 2. When the right answer is unknown 
Starting with our best guess of a model M, parameters : 
 
 Given x = x1…xN 
  for which the true  = 1…N is unknown, 
 
We can get to a provably more likely parameter set  
 
Principle: EXPECTATION MAXIMIZATION 
 
1. Estimate probabilistic parse based on parameters (E step) 
2. Update parameters Akl, Ek based on probabilistic parse (M step) 
3. Repeat 1 & 2, until convergence 
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Estimating probabilistic parse given params (E step) 
To estimate Akl: 
 
At each position i: 
 
Find probability transition kl is used: 
 
P(i = k, i+1 = l | x) = [1/P(x)]  P(i = k, i+1 = l, x1…xN) = Q/P(x) 
 
where Q = P(x1…xi, i = k, i+1 = l, xi+1…xN) = 
    = P(i+1 = l, xi+1…xN | i = k) P(x1…xi, i = k) = 
    = P(i+1 = l, xi+1xi+2…xN | i = k) fk(i) = 
    = P(xi+2…xN | i+1 = l) P(xi+1 | i+1 = l) P(i+1 = l | i = k) fk(i) = 
    = bl(i+1) el(xi+1) akl fk(i) 
 
         fk(i) akl el(xi+1) bl(i+1) 
So:  P(i = k, i+1 = l | x, ) =   –––––––––––––––––– 
      P(x | ) 

(For one such transition, at time step ii+1) 

P 

B 

P 

B 

P 

B B 

P 

B B 

P 

B 

P 

B 

G C A A A T G C 

L: 

S: 

End start 

P P 

B 

P 

K 

L 

i j 
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New parameters given probabilistic parse (M step) 

So, 

                              fk(i) akl el(xi+1) bl(i+1) 

Akl = i P(i = k, i+1 = l | x, ) = i ––––––––––––––––– 
                             P(x | ) 
 
 
Similarly, 
 

        Ek(b) = [1/P(x)] {i | xi = b} fk(i) bk(i) 

(Sum over all kl transitions, at any time step i) 
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Dealing with multiple training sequences 

(Sum over all training seqs, all kl transitions, all time steps i) 
If we have several training sequences, x1, …, xM, each of length N, 
 

                         fk(i) akl el(xi+1) bl(i+1) 

Akl = x i P(i = k, i+1 = l | x, ) = x i –––––––––––––––– 
                                       P(x | ) 
 
 
Similarly, 
 

      Ek(b) = x (1/P(x)) {i | xi = b} fk(i) bk(i) 
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The Baum-Welch Algorithm 
Initialization: 
 Pick the best-guess for model parameters 
  (or arbitrary) 
 
Iteration: 

1. Forward 
2. Backward 
3.  Calculate new log-likelihood P(x | )   (E step) 
4. Calculate Akl, Ek(b) 
5.  Calculate new model parameters akl, ek(b)  (M step) 

 
GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION 
 

Until P(x | ) does not change much 
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The Baum-Welch Algorithm – comments 
Time Complexity: 
  
 # iterations  O(K2N) 
 
• Guaranteed to increase the log likelihood of the model 

 
P( | x) = P(x, ) / P(x) = P(x | ) / ( P(x) P() ) 

 
• Not guaranteed to find globally best parameters 

 
Converges to local optimum, depending on initial conditions 

 
• Too many parameters / too large model: Overtraining 
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1.  Scoring x, one path 
 
  P(x,π) 
 
Prob of a path, emissions 
 

2.  Scoring x, all paths 
 
  P(x) = Σπ P(x,π) 
 
Prob of emissions, over all paths 

3. Viterbi decoding 
 
 π* = argmaxπ P(x,π) 
 
Most likely path 

4.  Posterior decoding 
 
π^ = {πi | πi=argmaxk ΣπP(πi=k|x)} 
 
Path containing the most likely 
state at any time point. 

One path All paths 
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 5. Supervised learning, given π 
 Λ* = argmaxΛ P(x,π|Λ) 
6. Unsupervised learning.  
  Λ* = argmaxΛ maxπP(x,π|Λ) 
 Viterbi training, best path 

6.  Unsupervised learning 
  
 Λ* = argmaxΛ ΣπP(x,π|Λ) 
 
Baum-Welch training, over all paths 
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Examples of HMMs for genome annotation 
Detection 
of GC-rich 
regions 

Detection 
of CpG-rich 
regions 

Detection 
of 
conserved 
regions 

Detection 
of protein-
coding 
exons 

Detection 
of protein-
coding 
conservatio
n 

Detection 
of protein-
coding 
gene 
structures 

Detection 
of 
chromatin 
states 

2 states, 
different 
nucleotide 
composition 

8 states,  
4 each +/-, 
different 
transition 
probabilities 

2 states, 
different 
conservation 
levels 

2 states, 
different tri-
nucleotide 
composition 

2 states, 
different 
evolutionary 
signatures 

~20 states, 
different 
composition/
conservation
, specific 
structure 

40 states, 
different 
chromatin 
mark 
combination
s 

GC-rich / AT-
rich 

CpG-rich / 
CpG-poor 

Conserved / 
non-
conserved 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

Coding exon 
/ non-coding 
(intron or 
intergenic) 

First/last/mid
dle coding 
exon,UTRs, 
intron1/2/3, 
intergenic, 
*(+/- strand) 

Enhancer / 
promoter / 
transcribed / 
repressed / 
repetitive 

Nucleotides Di-
Nucleotides 

Level of 
conservation 

Triplets of 
nucleotides 

64x64 matrix 
of codon 
substitution 
frequencies 

Codons, 
nucleotides, 
splice sites, 
start/stop 
codons 

Vector of 
chromatin 
mark 
frequencies 
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What have we learned ? 
• Generative model.  Hidden states, observed emissions. 

– Generate a random sequence 
• Choose random transition, choose random emission (#0) 

• Scoring:  Finding the likelihood of a given sequence  
– Calculate likelihood of annotated path and sequence 

• Multiply emission and transition probabilities (#1) 
– Without specifying a path, total probability of generating x 

• Sum probabilities over all paths 
• Forward algorithm (#3) 

• Decoding:  Finding the most likely path, given a sequence 
– What is the most likely path generating entire sequence? 

• Viterbi algorithm (#2) 
– What is the most probable state at each time step? 

• Forward + backward algorithms, posterior decoding (#4) 
• Learning:  Estimating HMM parameters from training data 

– When state sequence is known 
• Simply compute maximum likelihood A and E (#5a) 

– When state sequence is not known 
• Viterbi training:  Iterative estimation of best path / frequencies (#5b) 
• Baum-Welch:  Iterative estimation over all paths / frequencies (#6) 68



Goals for today: HMMs, part II 

1. Review:  Basics and three algorithms from last time 
– Markov Chains and Hidden Markov Models 
– Calculating likelihoods P(x,π) (algorithm 1) 
– Viterbi algorithm:  Find π* = argmaxπ P(x,π) (alg 3) 
– Forward algorithm:  Find P(x), over all paths (alg 2) 

2. Increasing the ‘state’ space / adding memory 
– Finding GC-rich regions vs. finding CpG islands 
– Gene structures GENSCAN, chromatin ChromHMM 

3. Posterior decoding: Another way of ‘parsing’ 
– Find most likely state πi, sum over all possible paths 

4. Learning (ML training, Baum-Welch, Viterbi training) 
– Supervised: Find ei(.) and aij given labeled sequence 
– Unsupervised: given only x  annotation + params 
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