6.047/6.878/HST. 507

Computational Biology: Genomes, Networks, Evolution

Lecture 05

Hidden Markov Models Part II

Module 1: Aligning and modeling genomes

- Module 1: Computational foundations
- Dynamic programming: exploring exponential spaces in poly-time
- Introduce Hidden Markov Models (HMMs): Central tool in CS
- HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring
- This week: Sequence alignment / comparative genomics
- Local/global alignment: infer nucleotide-level evolutionary events
- Database search: scan for regions that may have common ancestry
- Next week: Modeling genomes / exon / CpG island finding
- Modeling class of elements, recognizing members of a class
- Application to gene finding, conservation islands, CpG islands

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time

- Markov Chains and Hidden Markov Models
- Calculating likelihoods $P(x, \pi)$ (algorithm 1)
- Viterbi algorithm: Find $\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)$ (alg 3)
- Forward algorithm: Find $\mathrm{P}(\mathrm{x})$, over all paths (alg 2)

2. Increasing the 'state' space / adding memory

- Finding GC-rich regions vs. finding CpG islands
- Gene structures (GENSCAN), chromatin (ChromHMM)

3. Posterior decoding: Another way of 'parsing'

- Find most likely state π_{i}, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)

- Supervised: Find $\mathrm{e}_{\mathrm{i}}($.$) and \mathrm{a}_{\mathrm{ij}}$ given labeled sequence
- Unsupervised: given only $x \rightarrow$ annotation + params

Markov chains and Hidden Markov Models (HMMs)

Snow

All observed

- Markov Chain
- Q: states
- p : initial state probabilities
- A: transition probabilities
- What you see is what you get: next state only depends on current state (no memory)

- HMM
- Q: states, p: initial, A: transitions
- V: observations
- E: emission probabilities
- Hidden state of the world determines emission probabilities
- State transitions are a Markov chain

HMM nomenclature for this course

> Transitions: $a_{k l}=\mathrm{P}\left(\pi_{i}=\| \pi_{i-1}=k\right)$ Transition probability from state k to state I

Emissions: $e_{k}\left(x_{i}\right)=P\left(x_{i} \mid \pi_{i}=k\right)$
Emission probability of symbol $\boldsymbol{x}_{\boldsymbol{i}}$ from state \boldsymbol{k}

- Vector $\boldsymbol{x}=$ Sequence of observations
- Vector $\pi=$ Hidden path (sequence of hidden states)
- Transition matrix $A=\mathrm{a}_{\mathrm{kl}}=$ probability of $k \rightarrow l$ state transition
- Emission vector $E=e_{k}\left(x_{i}\right)=$ prob. of observing x_{i} from state k
- Bayes's rule: Use $\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{\pi}_{\boldsymbol{i}}=\boldsymbol{k}\right)$ to estimate $\boldsymbol{P}\left(\boldsymbol{\pi}_{\boldsymbol{i}}=\boldsymbol{k} \mid \boldsymbol{x}_{\boldsymbol{i}}\right)$

Example: The Dishonest Casino

A casino has two dice:

- Fair die
$P(1)=P(2)=P(3)=P(5)=P(6)=1 / 6$
- Loaded die
$P(1)=P(2)=P(3)=P(4)=P(5)=1 / 10$
$P(6)=1 / 2$
Casino player switches between fair and loaded die on average once every 20 turns

Game:

1. You bet $\$ 1$
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $\$ 2$

Examples of HMMs for genome annotation

Application	Detection of GC-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
Topology / Transitions	2 states, different nucleotide composition	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~ 20 states, different composition/ conservation specific	40 states, different chromatin mark combination structure
Hidden States / Annotation	GC-rich / AT- rich	Conserved / non- conserved	Coding exon /non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, $*(+/-s t r a n d) ~$	Enhancer / promoter / transcribed / repressed / repetitive
Emissions / Observatio ns	Nucleotides	Level of conservation	Triplets of nucleotides	Nucleotide triplets, conservation levels	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

The main questions on HMMs

1. Scoring x, one path = Joint probability of a sequence and a path, given the model

- GIVEN a HMMM, a path π, and a sequence x,
- FIND $\operatorname{Prob}[\mathrm{x}, \pi \mid \mathrm{M}]$
\rightarrow "Running the model", simply multiply emission and transition probabilities
\rightarrow Application: "all promoter" vs. "all backgorund" comparisons

2. Scoring x, all paths = total probability of a sequence, summed across all paths

- GIVEN a HMM M, a sequence x
- FIND the total probability $P[x \mid M]$ summed across all paths
\rightarrow Forward algorithm, sum score over all paths (same result as backward)

3. Viterbi decoding = parsing a sequence into the optimal series of hidden states

- GIVEN a HMM M, and a sequence x,
- FIND the sequence π^{*} of states that maximizes $P[x, \pi \mid M]$
\rightarrow Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path

4. Posterior decoding = total prob that emission x_{i} came from state k, across all paths

- GIVEN a HMM M, a sequence x
- FIND the total probability $\mathrm{P}\left[\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}, \mathrm{M}\right)$
\rightarrow Posterior decoding: run forward \& backward algorithms to \& from state $\pi_{1}=k$

5. Supervised learning = optimize parameters of a model given training data

- GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
- FIND parameters $\theta=\left(e_{i}, a_{i j}\right)$ that maximize $P[x \mid \theta]$
\rightarrow Simply count frequency of each emission and transition observed in the training data

6. Unsupervised learning = optimize parameters of a model given training data

- GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x ,
- FIND parameters $\theta=\left(e_{i}, a_{i j}\right)$ that maximize $P[x \mid \theta]$
\rightarrow Viterbi training: guess parameters, find optimal Viterbi path (\#2), update parameters (\#5), iterate
\rightarrow Baum-Welch training: guess, sum over all emissions/transitions (\#4), update (\#5), iterate

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$
Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \mid \Lambda)
$$

$\Lambda^{*}=\operatorname{argmax}_{\Lambda} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path
Baum-Welch training, over all paths

Probability of given path p, emissions x

Courtesy of Serafim Batzoglou. Used with permission.

- $\mathrm{P}(\mathrm{x}, \pi)=\mathrm{a}_{0 \pi_{1}} * \Pi_{i} \mathrm{e}_{\pi_{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \times \mathrm{a}_{\pi_{i} \pi_{i+1}}$ start emission transition

Example: One particular P vs. B assignment

L:

S:

$$
\begin{aligned}
P & =P(G \mid B) P\left(B_{1} \mid B_{0}\right) P(C \mid B) P\left(B_{2} \mid B_{1}\right) P(A \mid B) P\left(P_{3} \mid B_{2}\right) \ldots P\left(C \mid B_{7}\right) \\
& =(0.85)^{3} \times(0.25)^{6} \times(0.75)^{2} \times(0.42)^{2} \times 0.30 \times 0.15 \\
& =6.7 \times 10^{-7}
\end{aligned}
$$

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$
Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \mid \wedge)
$$

$\Lambda^{*}=\operatorname{argmax}_{\Lambda} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path
Baum-Welch training, over all paths

Finding the most likely path

- Find path π^{*} that maximizes total joint probability $\mathrm{P}[\mathrm{x}, \pi]$
- $\operatorname{argmax}_{\pi} P(x, \pi)=\operatorname{argmax}_{\pi} a_{0 \pi} * \Pi_{i}\left(e_{\pi_{i}}\left(x_{i}\right) \times a_{\pi_{i} \pi_{i+1}}\right.$ start emission transition

Calculate maximum $\mathrm{P}(\mathbf{x}, \pi)$ recursively

Viterbi algortithm

Define $V_{k}(i)=$ Probability of the most likely path through state $\pi_{i}=k$
Compute $\mathrm{V}_{\mathrm{k}}(\mathrm{i}+1)$ recursively, as a function of $\max _{\mathrm{k}^{\prime}}\left\{\mathrm{V}_{\mathrm{k}}(\mathrm{i})\right\}$

- Assume we know V_{j} for the previous time step (i-1)
- Calculate $\mathrm{V}_{\mathrm{k}}(\mathrm{i})=$ current max

this emission

all possible previous states j

The Viterbi Algorithm

$$
x_{1} \quad x_{2} \quad x_{3} \ldots \ldots
$$

Input: $x=x 1 \ldots . . . x N$
Initialization:

$$
V_{0}(0)=1, V_{k}(0)=0, \text { for all } k>0
$$

Iteration:

$$
V_{k}(i)=e_{k}\left(x_{i}\right) \times \max _{j} a_{j k} V_{j}(i-1)
$$

Termination:

$$
\mathrm{P}\left(\mathrm{x}, \pi^{*}\right)=\max _{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{~N})
$$

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space:
Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space: O(KN)

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$

Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \sum_{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \wedge)
$$

$\Lambda^{*}=\operatorname{argmax}_{\Lambda} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path
Baum-Welch training, over all paths

$P(x) \Leftrightarrow$ Prob that model emits x, sum over all paths

Given a sequence x,
What is the probability that x was generated by the model (using any path)?
$-P(x)=\sum_{\pi} P(x, \pi)$

- Challenge: exponential number of paths
- Sum over all paths, weighing the path probability, and the emission probs
- Prob of emitting sequence: use individual emission probs from each state
- Prob of path: use both emission and transition prob, based on previous path

Calculate total probability $\boldsymbol{\Sigma}_{\pi} \mathbf{P}(\mathrm{x}, \pi)$ recursively

- Assume we know f_{j} for the previous time step (i-1)
- Calculate $\mathrm{f}_{\mathrm{k}}(\mathrm{i})=$
current sum

this emission

Sum over all previous states j

The Forward Algorithm

$\begin{array}{lll}\mathrm{x}_{1} & \mathrm{X}_{2} & \mathrm{X}_{3}\end{array}$

Input: $\mathrm{x}=\mathrm{x} 1 \ldots . . \mathrm{xN}$
Initialization:

$$
f_{0}(0)=1, f_{k}(0)=0, \text { for all } k>0
$$

Iteration:

$$
f_{k}(i)=e_{k}\left(x_{i}\right) \times \operatorname{sum}_{j} a_{j k} f_{j}(i-1)
$$

Termination:

$$
P\left(x, \pi^{*}\right)=\operatorname{sum}_{k} f_{k}(N)
$$

In practice:
Sum of log scores is difficult
\rightarrow approximate $\exp (1+p+q)$
\rightarrow scaling of probabilities

Running time and space:
Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space: O(K)

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time

- Markov Chains and Hidden Markov Models
- Calculating likelihoods $\mathrm{P}(\mathrm{x}, \pi)$ (algorithm 1)
- Viterbi algorithm: Find $\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)$ (alg 3)
- Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the 'state' space / adding memory

- Finding GC-rich regions vs. finding CpG islands
- Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of 'parsing'

- Find most likely state π_{i}, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)

- Supervised: Find $\mathrm{e}_{\mathrm{i}}($.$) and \mathrm{a}_{\mathrm{ij}}$ given labeled sequence
- Unsupervised: given only $x \rightarrow$ annotation + params

Increasing the state space (remembering more)

HMM1: Promoters = only Cs and Gs matter
HMM2: Promoters = it's actually CpGs that matter
(di-nucleotides, remember previous nucleotide)

Increasing the state of the system (looking back)

- Markov Models are memory-less
- In other words, all memory is encoded in the states
- To remember additional information, augment state
- A two-state HMM has minimal memory
- Two states: GC-rich vs. equal probability
- State, emissions, only depend on current state
- Current state only encodes one previous nucleotide
- How do you count di-nucleotide frequencies?
- CpG islands: di-nucleotides
- Codon triplets: tri-nucleotides
- Di-codon frequencies: six nucleotides
\rightarrow Expanding the number of states

Remember previous nucleotide: expand both states

"Memory" of previous nucleotide is encoded in the current state.

GC-rich: 4 states

Background: 4 states

HMM for CpG islands

A: 1	A: 0	A: 0	A: 0
C: 0	C: 1	C: 0	C: 0
G: 0	G: 0	G: 1	G: 0
T: 0	T: 0	T: 0	T: 1
A. 1	A. 0	A:	A. 0
C: 0	C: 1	C: 0	C: 0
G: 0	G: 0	G: 1	G: 0
T: 0	T: 0	T: 0	T: 1

- A single model combines two Markov chains, each of four nucleotides:
- '+' states: $A_{+}, C_{+}, G_{+}, T_{+}$
- Emit symbols: A, C, G, T in CpG islands
- '-' states: $\mathrm{A}_{-}, \mathrm{C}_{-}, \mathrm{G}_{-}, \mathrm{T}$.
- Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the ' + ' and the '-' states
- Infer most likely set of states, giving rise to observed emissions
\rightarrow 'Paint' the sequence with + and - states

Why we need so many states...
In our simple GC-content example, we only had 2 states (+|-)
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?
\Rightarrow Encode 'memory' of previous state: nucleotide transitions

Training emission parameters for CpG+/CpG- states

- Count di-nucleotide frequencies:
- 16 possible di-nucleotides. 16 transition parameters.
- Alternative: 16 states, each emitting di-nucleotide
- Derive two Markov chain models:
- '+' model: from the CpG islands
- '-' model: from the remainder of sequence
- Transition probabilities for each model:
- Encode differences in di-nucleotide frequencies

$\mathbf{+}$	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	.180	.274	.426	.120
\mathbf{C}	.171	.368	.274	.188
\mathbf{G}	.161	.339	.375	.125
\mathbf{T}	.079	.355	.384	.182

$\mathbf{=}$	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	.300	.205	.285	.210
\mathbf{C}	.322	.298	.078	.302
\mathbf{G}	.248	.246	.298	.208
\mathbf{T}	.177	.239	.292	.292

Examples of HMMs for genome annotation

Detection of GC-rich regions	Detection of CpG-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
2 states, different nucleotide composition	8 states, 4 each +/-, different transition probabilities	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~ 20 states, different composition/ conservation specific structure	40 states, different chromatin mark combination s
GC-rich / AT- rich	CpG-rich / CpG-poor	Conserved / non- conserved	Coding exon /non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, $*(+/-s t r a n d) ~$	Enhancer / promoter / transcribed / repressed / repetitive
Nucleotides	Di- Nucleotides	Level of conservation	Triplets of nucleotides	64x64 matrix of codon substitution frequencies	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

HMM architecture matters: Protein-coding genes

© Bill Majoros / GeneZilla. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Gene vs. Intergenic
- Start \& Stop in/out
- UTR: 5' and 3' end
- Exons, Introns
- Remembering frame
- E0,E1,E2
- I0,I1,I2
- Sequence patterns to transition between states:
- ATG, TAG, Acceptor/Donor, TATA, AATAA

Chromatin State: Emission \& Transition Matrices

(c) Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information,see http://ocw.mit.edu/help/faq-fair-use/.
Source: Ernst, Jason and Manolis Kellis. "Discovery and characterization of chromatin states for systematic annotation of the human genome." Nature Biotechnology 28, no. 8 (2010): 817-825.

- Emission matrix:
- Multi-variate HMM
- Emits vector of values
- Transition matrix:
- Learn spatial relationships
- No a-priori 'gene’ structure

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time

- Markov Chains and Hidden Markov Models
- Calculating likelihoods $\mathrm{P}(\mathrm{x}, \pi)$ (algorithm 1)
- Viterbi algorithm: Find $\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)$ (alg 3)
- Forward algorithm: Find $\mathrm{P}(\mathrm{x})$, over all paths (alg 2)

2. Increasing the 'state' space / adding memory

- Finding GC-rich regions vs. finding CpG islands
- Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of 'parsing'

- Find most likely state π_{i}, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)

- Supervised: Find $\mathrm{e}_{\mathrm{i}}($.$) and \mathrm{a}_{\mathrm{ij}}$ given labeled sequence
- Unsupervised: given only $x \rightarrow$ annotation + params

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$
Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \sum_{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \wedge)
$$

$\Lambda^{*}=\operatorname{argmax}_{\Lambda} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path
Baum-Welch training, over all paths

4. Decoding, all paths

Find the likelihood an emission x_{i} is generated by a state

Calculate most probable label at a single position

$P\left(\right.$ Label $\left._{i}=B \mid x\right)$

- Calculate most probable label, $\mathrm{L}_{\mathrm{i}}^{*}$, at each position i
- Do this for all N positions gives us $\left\{L^{*}{ }_{1}, L^{*}{ }_{2}, L^{*}{ }_{3} \ldots . L_{N}^{*}\right\}$
- How much information have we observed? Three settings:
- Observed nothing: Use prior information
- Observed only character at position i: Prior + emission probability
- Observed entire sequence: Posterior decoding

Calculate $P\left(\pi_{7}=C p G+\mid x_{7}=G\right)$

- With no knowledge (no characters)
- Simply time spent in markov chain states
$-\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}\right)=$ most likely state (prior)
- With very little knowledge (just that character)
- Time spent, adjusted for different emission probs.
- Use Bayes rule to change inference directionality
$-P\left(\pi_{i}=k \mid x_{i}=G\right)=P\left(\pi_{i}=\kappa\right){ }^{*} P\left(x_{i}=G \mid \pi_{i}=k\right) / P\left(x_{i}=G\right)$
- With knowledge of entire sequence (all characters)
- $\mathrm{P}\left(\pi_{\mathrm{i}}=k \mid x=A G C G C G . . . G A T T A T C G T C G T A\right)$
- Sum over all paths that emit ‘G’ at position 7
\rightarrow Posterior decoding

Motivation for the Backward Algorithm

We want to compute

$$
\mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid \mathrm{x}\right) \text {, the probability distribution on the } \mathrm{i}^{\text {th }} \text { position, given } \mathrm{x}
$$

We start by computing

$$
\begin{aligned}
\mathrm{P}\left(\pi_{\mathrm{i}} \mathrm{k}, \mathrm{x}\right) & =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}, \mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}}\right) \\
& =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}} \mid \mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}}, \pi_{\mathrm{i}}=\mathrm{k}\right) \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right)
\end{aligned}
$$

Forward, $\mathrm{f}_{\mathrm{k}}(\mathrm{i}) \quad$ Backward, $\mathrm{b}_{\mathrm{k}}(\mathrm{i})$

The Backward Algorithm - derivation
Define the backward probability:

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{k}}(\mathrm{i})=\mathrm{P}\left(\mathrm{x}_{\mathrm{i}+1} \ldots \mathrm{x}_{\mathrm{N}} \mid \pi_{\mathrm{i}}=\mathrm{k}\right) \\
& =\Sigma_{\pi i+1 \ldots \pi N} P\left(x_{i+1}, x_{i+2}, \ldots, x_{N}, \pi_{i+1}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\Sigma_{\mid} \Sigma_{\pi i+1 \ldots \pi N} P\left(x_{i+1}, x_{i+2}, \ldots, x_{N}, \pi_{i+1}=I, \pi_{i+2}, \ldots, \pi_{N} \mid \pi_{i}=k\right) \\
& =\Sigma_{1} \mathrm{e}_{\mathrm{l}}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{k} \mid} \Sigma_{\pi i+1 \ldots \pi \mathrm{~N}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}+2}, \ldots, \mathrm{x}_{\mathrm{N}}, \pi_{\mathrm{i}+2}, \ldots, \pi_{\mathrm{N}} \mid \pi_{\mathrm{i}+1}=\mathrm{l}\right) \\
& =\Sigma_{l} e_{l}\left(x_{i+1}\right) a_{k \mid} \mathrm{b}_{l}(\mathrm{i}+1)
\end{aligned}
$$

Calculate total end probability recursively

- Assume we know b_{1} for the next time step ($i+1$)

sum over all possible next states

The Backward Algorithm

$\mathrm{x}_{1} \quad \mathrm{x}_{2} \quad \mathrm{x}_{3}$

Input: $\mathrm{x}=\mathrm{x} 1 \ldots . . \mathrm{xN}$
Initialization:

$$
b_{k}(N)=a_{k 0}, \text { for all } k
$$

Iteration:

$$
\mathrm{b}_{\mathrm{k}}(\mathrm{i})=\sum_{\mid} \mathrm{e}_{\|}\left(\mathrm{x}_{\mathrm{i}+1}\right) \mathrm{a}_{\mathrm{k} \mid} \mathrm{b}_{\mathbf{l}}(\mathrm{i}+1)
$$

Termination:

$$
P(x)=\Sigma_{1} a_{0 \mid} e_{\mid}\left(x_{1}\right) b_{1}(1)
$$

In practice:
Sum of log scores is difficult
\rightarrow approximate $\exp (1+p+q)$
\rightarrow scaling of probabilities

Running time and space:
Time: $\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$
Space: O(K)

Putting it all together: Posterior decoding

- $P(k)=P\left(\pi_{i}=k \mid x\right)=f_{k}(i)^{*} b_{k}(i) / P(x)$
- Probability that $\mathrm{i}^{\text {th }}$ state is k , given all emissions x
- Posterior decoding
- Find the most likely state at position i over all possible hidden paths given the observed sequence x
$-\pi_{\mathrm{i}}^{\wedge}=\operatorname{argmax}_{\mathrm{k}} \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k} \mid x\right)$
- Posterior decoding 'path' $\pi_{i}{ }_{i}$
- For classification, more informative than Viterbi path π^{*}
- More refined measure of "which hidden states" generated x
- However, it may give an invalid sequence of states
- Not all $j \rightarrow k$ transitions may be possible

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time

- Markov Chains and Hidden Markov Models
- Calculating likelihoods $P(x, \pi)$ (algorithm 1)
- Viterbi algorithm: Find $\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)$ (alg 3)
- Forward algorithm: Find $P(x)$, over all paths (alg 2)

2. Increasing the 'state' space / adding memory

- Finding GC-rich regions vs. finding CpG islands
- Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of 'parsing'

- Find most likely state π_{i}, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)

- Supervised: Find $\mathrm{e}_{\mathrm{i}}($.$) and \mathrm{a}_{\mathrm{ij}}$ given labeled sequence
- Unsupervised: given only $x \rightarrow$ annotation + params

One path

1. Scoring x, one path
$P(x, \pi)$
Prob of a path, emissions
2. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\Sigma_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
$\Lambda^{*}=\operatorname{argmax}_{\wedge} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \wedge)$
Viterbi training, best path
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$
Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \Sigma_{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \wedge)
$$

Baum-Welch training, over all paths

Learning: How to train an HMM

Transition probabilities
e.g. $P\left(P_{i+1} \mid B_{i}\right)$ - the probability of entering a pathogenicity island from background DNA

Emission probabilities
i.e. the nucleotide frequencies for background DNA and pathogenicity islands

Two learning scenarios

Case 1. Estimation when the "right answer" is known

Examples:

GIVEN:
a genomic region $\mathrm{x}=\mathrm{x}_{1} \ldots \mathrm{x}_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

Case 2. Estimation when the "right answer" is unknown

Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

QUESTION: Update the parameters θ of the model to maximize $\mathrm{P}(\mathrm{x} \mid \theta)$

Two types of learning: Supervised / Unsupervised

5. Supervised learning
infer model parameters given labeled training data

- GIVEN:
- a HMM M, with unspecified transition/emission probs.
- labeled sequence x ,
- FIND:
- parameters $\theta=(E i, A i j)$ that maximize $P[x \mid \theta]$
\rightarrow Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning

infer model parameters given unlabelled training data

- GIVEN:
- a HMM M, with unspecified transition/emission probs.
- unlabeled sequence x,
- FIND:
- parameters $\theta=(E i, A i j)$ that maximize $P[x \mid \theta]$
\rightarrow Viterbi training:
guess parameters, find optimal Viterbi path (\#2), update parameters (\#5), iterate
\rightarrow Baum-Welch training:
guess parameters, sum over all paths (\#4), update parameters (\#5), iterate

5: Supervised learning

Estimate model parameters based on labeled training data

Case 1. When the right answer is known

Given $x=x_{1} \ldots x_{N}$
for which the true $\pi=\pi_{1} \ldots \pi_{N}$ is known,
Define:

$A_{k l}$	$=\#$ times $\mathrm{k} \rightarrow \mathrm{l}$ transition occurs in π
$\mathrm{E}_{\mathrm{k}}(\mathrm{b})$	$=\#$ times state k in π emits b in x

We can show that the maximum likelihood parameters θ are:

$$
\mathrm{e}_{\mathrm{k}}(\mathrm{~b})=\frac{\mathrm{E}_{\mathrm{k}}(\mathrm{~b})}{\Sigma_{\mathrm{c}} \mathrm{E}_{\mathrm{k}}(\mathrm{c})}
$$

Learning From Labelled Data \rightarrow Maximum Likelihood Estimation

If we have a sequence that has islands marked, we can simply count

Case 1. When the right answer is known

Intuition: When we know the underlying states, Best estimate is the average frequency of transitions \& emissions that occur in the training data

Drawback:

Given little data, there may be overfitting:
$P(x \mid \theta)$ is maximized, but θ is unreasonable
0 probabilities - VERY BAD
Example:
Given 10 nucleotides, we observe

$$
\begin{aligned}
& \mathrm{x}=\mathrm{C}, \mathrm{~A}, \mathrm{G}, \mathrm{G}, \mathrm{~T}, \mathrm{C}, \mathrm{C}, \mathrm{~A}, \mathrm{~T}, \mathrm{C} \\
& \pi=\mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}, \mathrm{P}
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{PP}}=1 ; \quad \mathrm{a}_{\mathrm{PB}}=0 \\
& \mathrm{e}_{\mathrm{P}}(\mathrm{~A})=.2 ; \\
& \mathrm{e}_{\mathrm{P}}(\mathrm{C})=.4 ; \\
& \mathrm{e}_{\mathrm{P}}(\mathrm{G})=.2 ; \\
& \mathrm{e}_{\mathrm{P}}(\mathrm{~T})=.2
\end{aligned}
$$

Pseudocounts

Solution for small training sets:
Add pseudocounts

$$
\begin{array}{lll}
\mathrm{A}_{\mathrm{kl}} & =\# \text { times } \mathrm{k} \rightarrow \text { l transition occurs in } \pi & +\mathrm{r}_{\mathrm{kl}} \\
\mathrm{E}_{\mathrm{k}}(\mathrm{~b}) & =\# \text { times state } \mathrm{k} \text { in } \pi \text { emits } \mathrm{b} \text { in } \mathrm{x} & +\mathrm{r}_{\mathrm{k}}(\mathrm{~b})
\end{array}
$$

$r_{k}, r_{k}(b)$ are pseudocounts representing our prior belief

Larger pseudocounts \Rightarrow Strong priof belief
Small pseudocounts ($\varepsilon<1$): just to avoid 0 probabilities

Example: Training Markov Chains for CpG islands

- Training Set:
- set of DNA sequences w/ known CpG islands
- Derive two Markov chain models:
- ‘+' model: from the CpG islands

$\mathbf{+}$	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	.180	.274	.426	.120
\mathbf{C}	.171	.368	.274	.188
\mathbf{G}	.161	.339	.375	.125
\mathbf{T}	.079	.355	.384	.182

$\mathbf{-}$	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}
\mathbf{A}	.300	.205	.285	.210
\mathbf{C}	.322	.298	.078	.302
\mathbf{G}	.248	.246	.298	.208
\mathbf{T}	.177	.239	.292	.292

- ' - ' model: from the remainder of sequence
- Transition probabilities for each model:

$$
a_{s t}^{+}=\frac{c_{s t}^{+}}{\sum_{t^{\prime}} c_{s t^{\prime}}^{+}}
$$

$c_{s t}^{+}$ is the number of times letter t followed letter s inside the CpG islands

$$
a_{s t}^{-}=\frac{c_{s t}^{-}}{\sum_{t^{\prime}} c_{s t^{\prime}}^{-}}
$$

$c_{s t}^{-}$ is the number of times letter t followed letter s outside the CpG islands

6: Unsupervised learning

Estimate model parameters based on unlabeled training data

Unlabelled Data

How do we know how to count?

S: $\begin{array}{lllllllll}\text { G } & \mathbf{C} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{C}\end{array}$

$\mathbf{P}\left(\mathrm{L}_{\mathrm{i}+1} 1 \mathrm{~L}_{\mathrm{i}}\right)$
$\mathrm{B}_{\mathrm{i}+1} \mathrm{P}_{\mathrm{i}+1}$ End
B_{i}
P_{i}
Start

Unlabeled Data

L:

S:
G C
A
A $\quad \mathbf{T}$
G
C

An idea:

1. Imagine we start with some parameters
2. We could calculate the most likely path, P^{*}, given those parameters and S
3. We could then use P^{*} to update our parameters by maximum likelihood
4. And iterate (to convergence)

Learning case 2. When the right answer is unknown

We don't know the true $\mathrm{A}_{\mathrm{k}}, \mathrm{E}_{\mathrm{k}}(\mathrm{b})$

Idea:

- We estimate our "best guess" on what $\mathrm{A}_{\mathrm{k}}, \mathrm{E}_{\mathrm{k}}(\mathrm{b})$ are (M step, maximum-likelihood estimation)
- We update the probabilistic parse of our sequence, based on these parameters (E step, expected probability of being in each state given parameters)
- We repeat

Two settings:

- Simple: Viterbi training (best guest = best path)
- Correct: Expectation maximization (all paths, weighted)

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$

Path containing the most likely state at any time point.
7. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \mid \Lambda)
$$

$\Lambda^{*}=\operatorname{argmax}_{\wedge} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path

Simple casae: Viterbi Training

Initialization:

Pick the best-guess for model parameters

(or arbitrary)

Iteration:

1. Perform Viterbi, to find π^{*}
2. Calculate $A_{k \mid}, E_{k}(b)$ according to $\pi^{*}+$ pseudocounts
3. Calculate the new parameters $\mathrm{a}_{\mathrm{k}}, \mathrm{e}_{\mathrm{k}}(\mathrm{b})$

Until convergence
Notes:

- Convergence to local maximum guaranteed. Why?
- Does not maximize $\mathrm{P}(\mathrm{x} \mid \theta)$
- In general, worse performance than Baum-Welch

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
$\Lambda^{*}=\operatorname{argmax}_{\wedge} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \wedge)$
Viterbi training, best path
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$
Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \sum_{\pi} P(x, \pi \mid \wedge)
$$

Baum-Welch training, over all paths

Expectation Maximization (EM)

The basic idea is the same:
1.Use model to estimate missing data (E step)
2.Use estimate to update model (M step) 3.Repeat until convergence

EM is a general approach for learning models (ML estimation) when there is "missing data" Widely used in computational biology

EM pervasive in computational biology
\longrightarrow Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

Expectation Maximization (EM)

1. Initialize parameters randomly
2. E Step Estimate expected probability of hidden labels, \mathbf{Q}, given current (latest) parameters and observed (unchanging) sequence

$$
Q=P\left(\text { Labels } \mid S, \text { params }^{t-1}\right)
$$

3. M Step Choose new maximum likelihood parameters over probability distribution \mathbf{Q}, given current probabilistic label assignments

$$
\text { params }^{t}=\underset{\text { params }}{\arg \max } E_{Q}\left\lfloor\log P\left(S, \text { labels } \mid \text { params }^{t-1}\right)\right\rfloor
$$

4. Iterate
$\mathrm{P}(\mathrm{S} \mid$ Model $)$ guaranteed to increase each iteration

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given $x=x_{1} \ldots x_{N}$ for which the true $\pi=\pi_{1} \ldots \pi_{\mathrm{N}}$ is unknown,

We can get to a provably more likely parameter set θ

Principle: EXPECTATION MAXIMIZATION

1. Estimate probabilistic parse based on parameters (E step)
2. Update parameters $A_{k l}, E_{k}$ based on probabilistic parse (M step)
3. Repeat 1 \& 2, until convergence

Estimating probabilistic parse given params (E step)
To estimate $\mathbf{A}_{\mathbf{k l}}$:
At each position i :

Find probability transition $\mathrm{k} \rightarrow$ is used:

$$
\begin{aligned}
P\left(\pi_{i}=k,\right. & \left.\pi_{i+1}=I \mid x\right)=[1 / P(x)] \times P\left(\pi_{i}=k, \pi_{i+1}=I, x_{1} \ldots x_{N}\right)=Q / P(x) \\
\text { where } Q & =P\left(x_{1} \ldots x_{i},\left|\pi_{i}=k\right| \pi_{i+1}=I, x_{i+1} \ldots x_{N}\right)= \\
& =P\left(\pi_{i+1}=I, x_{i+1} \ldots x_{N} \mid \pi_{i}=k\right) P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right)= \\
& =P\left(\pi_{i+1}=I, x_{i+1} x_{i+2} \ldots x_{N} \mid \pi_{i}=k\right) f_{k}(i)= \\
& =P\left(x_{i+2} \ldots x_{N} \mid \pi_{i+1}=I\right) P\left(x_{i+1} \mid \pi_{i+1}=I\right) P\left(\pi_{i+1}=I \mid \pi_{i}=k\right) f_{k}(i)= \\
& =b_{1}(i+1) e_{1}\left(x_{i+1}\right) a_{k \mid} f_{k}(i)
\end{aligned}
$$

So:

$$
P\left(\pi_{i}=k, \pi_{i+1}=I \mid x, \theta\right)=\frac{f_{k}(i) a_{k l} e_{l}\left(x_{i+1}\right) b_{1}(i+1)}{P(x \mid \theta)}
$$

(For one such transition, at time step $i \rightarrow i+1$)

New parameters given probabilistic parse (M step)

(Sum over all $k \rightarrow$ I transitions, at any time step i) So,

$$
f_{k}(i) a_{k l} e_{l}\left(x_{i+1}\right) b_{l}(i+1)
$$

$\mathrm{A}_{\mathrm{kl}}=\sum_{\mathrm{i}} \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \pi_{\mathrm{i}+1}=1 \mid \mathrm{x}, \theta\right)=\sum_{\mathrm{i}}$

$$
P(x \mid \theta)
$$

Similarly,

$$
E_{k}(b)=[1 / P(x)] \sum_{\{i \mid x i=b\}} f_{k}(i) b_{k}(i)
$$

Dealing with multiple training sequences

(Sum over all training seqs, all $k \rightarrow \mid$ transitions, all time steps i)
If we have several training sequences, x^{1}, \ldots, x^{m}, each of length N,

$$
f_{k}(i) a_{k l} e_{1}\left(x_{i+1}\right) b_{1}(i+1)
$$

$\mathrm{A}_{\mathrm{kl}}=\sum_{\mathrm{x}} \Sigma_{\mathrm{i}} \mathrm{P}\left(\pi_{\mathrm{i}}=\mathrm{k}, \pi_{\mathrm{i}+1}=\mathrm{I} \mid \mathrm{x}, \theta\right)=\sum_{\mathrm{x}} \Sigma_{\mathrm{i}}$
$P(x \mid \theta)$

Similarly,

$$
E_{k}(b)=\sum_{x}(1 / P(x)) \sum_{\{i \mid x i=b\}} f_{k}(i) b_{k}(i)
$$

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

1. Forward
2. Backward
3. \rightarrow Calculate new log-likelihood $P(x \mid \theta) \quad(E$ step)
4. Calculate $A_{k}, E_{k}(b)$
5. \rightarrow Calculate new model parameters $a_{k \mid}, e_{k}(b)$ (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm - comments

Time Complexity:
\# iterations $\times \mathrm{O}\left(\mathrm{K}^{2} \mathrm{~N}\right)$

- Guaranteed to increase the log likelihood of the model

$$
P(\theta \mid x)=P(x, \theta) / P(x)=P(x \mid \theta) /(P(x) P(\theta))
$$

- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model:

Overtraining

One path

1. Scoring x, one path

$$
P(x, \pi)
$$

Prob of a path, emissions
3. Viterbi decoding

$$
\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)
$$

Most likely path

All paths

2. Scoring x, all paths

$$
P(x)=\sum_{\pi} P(x, \pi)
$$

Prob of emissions, over all paths
4. Posterior decoding
$\pi^{\wedge}=\left\{\pi_{i} \mid \pi_{i}=\operatorname{argmax}_{k} \Sigma_{\pi} P\left(\pi_{i}=k \mid x\right)\right\}$

Path containing the most likely state at any time point.
6. Unsupervised learning

$$
\Lambda^{*}=\operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \mid \Lambda)
$$

$\Lambda^{*}=\operatorname{argmax}_{\Lambda} \max _{\pi} \mathrm{P}(\mathrm{x}, \pi \mid \Lambda)$
Viterbi training, best path
Baum-Welch training, over all paths

Examples of HMMs for genome annotation

Detection of GC-rich regions	Detection of CpG-rich regions	Detection of conserved regions	Detection of protein- coding exons	Detection of protein- coding conservatio n	Detection of protein- coding gene structures	Detection of chromatin states
2 states, different nucleotide composition	8 states, 4 each +/-, different transition probabilities	2 states, different conservation levels	2 states, different tri- nucleotide composition	2 states, different evolutionary signatures	~ 20 states, different composition/ conservation , specific structure	40 states, different chromatin mark combination s
GC-rich / AT- rich	CpG-rich / CpG-poor	Conserved / non- conserved	Coding exon /non-coding (intron or intergenic)	Coding exon / non-coding (intron or intergenic)	First/last/mid dle coding exon,UTRs, intron1/2/3, intergenic, $*(+/-s t r a n d) ~$	Enhancer / promoter / transcribed / repressed / repetitive
Nucleotides	Di- Nucleotides	Level of conservation	Triplets of nucleotides	64x64 matrix of codon substitution frequencies	Codons, nucleotides, splice sites, start/stop codons	Vector of chromatin mark frequencies

What have we learned?

- Generative model. Hidden states, observed emissions.
- Generate a random sequence
- Choose random transition, choose random emission (\#0)
- Scoring: Finding the likelihood of a given sequence
- Calculate likelihood of annotated path and sequence
- Multiply emission and transition probabilities (\#1)
- Without specifying a path, total probability of generating x
- Sum probabilities over all paths
- Forward algorithm (\#3)
- Decoding: Finding the most likely path, given a sequence
- What is the most likely path generating entire sequence?
- Viterbi algorithm (\#2)
- What is the most probable state at each time step?
- Forward + backward algorithms, posterior decoding (\#4)
- Learning: Estimating HMM parameters from training data
- When state sequence is known
- Simply compute maximum likelihood A and E (\#5a)
- When state sequence is not known
- Viterbi training: Iterative estimation of best path / frequencies (\#5b)
- Baum-Welch: Iterative estimation over all paths / frequencies (\#6)

Goals for today: HMMs, part II

1. Review: Basics and three algorithms from last time

- Markov Chains and Hidden Markov Models
- Calculating likelihoods $\mathrm{P}(\mathrm{x}, \pi)$ (algorithm 1)
- Viterbi algorithm: Find $\pi^{*}=\operatorname{argmax}_{\pi} P(x, \pi)$ (alg 3)
- Forward algorithm: Find $\mathrm{P}(\mathrm{x})$, over all paths (alg 2)

2. Increasing the 'state' space / adding memory

- Finding GC-rich regions vs. finding CpG islands
- Gene structures GENSCAN, chromatin ChromHMM

3. Posterior decoding: Another way of 'parsing'

- Find most likely state π_{i}, sum over all possible paths

4. Learning (ML training, Baum-Welch, Viterbi training)

- Supervised: Find $\mathrm{e}_{\mathrm{i}}($.$) and \mathrm{a}_{\mathrm{ij}}$ given labeled sequence
- Unsupervised: given only $x \rightarrow$ annotation + params

MIT OpenCourseWare
http://ocw.mit.edu
6.047 / 6.878 / HST. 507 Computational Biology

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

