Lecture 3
 Sequence Alignment II Database search

Global vs. Local alignment
Exact string matching and Karp-Rabin
Database search and BLAST
Deterministic linear-time string matching

Module 1: Aligning and modeling genomes

- Module 1: Computational foundations
- Dynamic programming: exploring exponential spaces in poly-time
- Introduce Hidden Markov Models (HMMs): Central tool in CS
- HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring
- This week: Sequence alignment / comparative genomics
- Local/global alignment: infer nucleotide-level evolutionary events
- Database search: scan for regions that may have common ancestry
- Next week: Modeling genomes / exon / CpG island finding
- Modeling class of elements, recognizing members of a class
- Application to gene finding, conservation islands, CpG islands

Remember Lecture 2

Sequence alignment and
Dynamic programming

Duality: seq. alignment \Leftrightarrow path through the matrix

M[i,j] stores max score of prefix alignment of $\mathrm{S}_{1}[1 . . \mathrm{i}]$ and $\mathrm{S}_{2}[1 . . \mathrm{j}]$

Best alignment \Leftrightarrow Best path through the matrix

Alignments Prefix alignmt \Leftrightarrow Paths \quad score $\Leftrightarrow M[1, j]$

| S1 | A | C | G | T | C | A | T | C | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | S2 | T | |
| :--- | :--- | :--- |
| | A | A |

G
T
G
T
C
A

Computing alignments recursively: $M[i, j]=F(s m a l l e r)$

- Local update rules, only look at neighboring cells:
- Compute next alignment based on previous alignment
- Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]
- Table lookup avoids repeated computation
- Computing the score of a cell from smaller neighbors

$$
\begin{gathered}
M(i-1, j)-\text { gap } \\
-M(i, j)=\max \left\{\begin{array}{c}
M(i-1, j-1)+\text { score }\} \\
M(i, j-1)-\text { gap }
\end{array}\right.
\end{gathered}
$$

- Only three possibilities for extending by one nucleotide: a gap in one species, a gap in the other, a (mis)match
- Compute scores for prefixes of increasing length
- Start with prefixes of length 1, extend by one each time, until all prefixes have been computed
- When you reach bottom right, alignment score of $S_{1}[1 . . \mathrm{m}]$ and $\mathrm{S}_{2}[1 . . \mathrm{n}]$ is alignment of full S_{1} and full S_{2}
- (Can then trace back to construct optimal path to it)

Dynamic Programming for sequence alignment

- Setting up dynamic programming

1. Find 'matrix' parameterization

- Prefix parameterization. Score($\left.\mathrm{S}_{1}[1 . . \mathrm{i}], \mathrm{S}_{2}[1 . . \mathrm{j}]\right) \rightarrow \mathrm{M}(\mathrm{i}, \mathrm{j})$
- (i,j) only prefixes vs. (i,j,k,l) all substrings \rightarrow simpler 2-d matrix

2. Make sure sub-problem space is finite! (not exponential)

- It's just n^{2}, quadratic (which is polynomial, not exponential)

3. Traversal order: sub-results ready when you need them
 Cols $L \rightarrow R$ \qquad Rows top \rightarrow bot
 Diags topR \rightarrow botL
4. Recursion formula: larger problems = Func(subparts)

- Need formula for computing M[i,j] as function of previous results
- Single increment at a time, only look at $M[i-1, j], M[i, j-1], M[i-1, j-1]$ corresponding to 3 options: gap in S_{1}, gap in S_{2}, char in both
- Score in each case depends on gap/match/mismatch penalties

5. Remember choice: $F()$ typically includes $\min ()$ or max()

- Remember which of three cells (top,left,diag) led to maximum
- Trace-back from max score to identify path leading to it

Algorithmic variations (save time and/or space)

- Save time: Bounded-space computation
- Space: O(k*m)
- Time: $O\left(k^{*} m\right)$, where $k=$ radius explored
- Heuristic
- Not guaranteed optimal answer
- Works very well in practice
- Practical interest

- Save space: Linear-space computation
- Save only one col / row / diag at a time
- Computes optimal score easily
- Theoretical interest
- Effective running time slower
- Optimal answer guaranteed
- Recursive call modification allows traceback

Finding optimal path using only linear space

$\mathrm{F}(\mathrm{M} / 2, k) \quad \mathrm{F}^{\prime}(\mathrm{M} / 2, \mathrm{~N}-\mathrm{k})$

Iterate procedure in corner quadrants

Sum the two \rightarrow best transition

$\operatorname{Max} F(\mathrm{M} / 2, \mathrm{k})+\mathrm{Fr}(\mathrm{M} / 2, \mathrm{~N}-\mathrm{k})$

Total cost MN $(1+1 / 2+1 / 4+1 / 8+\ldots) \leq 2 \mathrm{MN}$

Genome alignment in an excel spreadsheet

S1:"TAAC-CTTTATCTGCCA" S2:"TAACGGCCCATCT-CGA"

| | T | A | A | C | C | T | T | T | A | T | C | T | G | C | C | A |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 | -12 | -13 | -14 | -15 | -16 |
| -1 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 | -12 | -13 | -14 |
| -2 | 0 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -11 | -12 |
| -3 | -1 | 1 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 |
| -4 | -2 | 0 | 2 | 4 | 3 | 2 | 1 | 0 | -1 | -2 | -3 | -4 | -5 | -6 | -7 | -8 |
| -5 | -3 | -1 | 1 | 3 | 3 | 2 | 1 | 0 | 0 | -1 | -2 | -3 | -3 | -4 | -5 | -6 |
| -6 | -4 | -2 | 0 | 2 | 2 | 2 | 1 | 0 | 0 | -1 | -2 | -3 | -2 | -3 | -4 | -5 |
| -7 | -5 | -3 | -1 | 1 | 3 | 2 | 2 | 1 | 0 | 0 | 0 | -1 | -2 | -1 | -2 | -3 |
| -8 | -6 | -4 | -2 | 0 | 2 | 3 | 2 | 2 | 1 | 0 | 1 | 0 | -1 | -1 | 0 | -1 |
| -9 | -7 | -5 | -3 | -1 | 1 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | -1 |
| -10 | -8 | -6 | -4 | -2 | 0 | 1 | 2 | 2 | 3 | 2 | 1 | 0 | 1 | 0 | -1 | 1 |
| -11 | -9 | -7 | -5 | -3 | -1 | 1 | 2 | 3 | 2 | 4 | 3 | 2 | 1 | 1 | 0 | 0 |
| -12 | -10 | -8 | -6 | -4 | -2 | 0 | 1 | 2 | 2 | 3 | 5 | 4 | 3 | 2 | 2 | 1 |
| -13 | -11 | -9 | -7 | -5 | -3 | -1 | 1 | 2 | 1 | 3 | 4 | 6 | 5 | 4 | 3 | 2 |
| -14 | -12 | -10 | -8 | -6 | -4 | -2 | 0 | 1 | 1 | 2 | 4 | 5 | 5 | 6 | 5 | 4 |
| -15 | -13 | -11 | -9 | -7 | -5 | -3 | -1 | 0 | 1 | 1 | 3 | 4 | 6 | 5 | 5 | 5 |
| -16 | -14 | -12 | -10 | -8 | -6 | -4 | -2 | -1 | 1 | 0 | 2 | 3 | 5 | 5 | 4 | 6 |

$$
\begin{array}{llllllllllllllll}
\mathrm{T} & \mathrm{~A} & \mathrm{~A} & \mathrm{C} & \mathrm{C} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{~T} & \mathrm{G} & \mathrm{C} & \mathrm{C} & \mathrm{~A}
\end{array}
$$

1	-	--	--	--	-1	--1	--1	--	--1	--	- -1	--	--		--	-
1	1	--1	--	--	--	--	--	-1	--	--	--	--	--	-	--	--1
1	।	1	--	--	--	--	--	--1	-	-	--	-	-	-	--	--1
1	1	1	1	-1	--	--	--	-	--	-1	--	-	-1	-1	--1	-
I	1	I	1	1	--1	--1	--1	1	--	--	-	1	--	-	--	--
1	1	1	1	11	1	-1	-1	1	-1	- 1	-1	1		-	\cdots	-1
1	1	1	II	1	-1	1	-1	--	1	1	-	-	1	1	-1	--
1	1	1	11	I	1	-1	1	--	-1	1	-1	-	1		1	\cdots
1	1	1	11	I	I	1	-1	-1	1	1	1	-	1		1	- -
1	I	I	1	1	1	1	1	1	-	--	$1-1$	1				1
11	1	I	1	1	1	1	1	$1-$	1	\cdots	-1	-	1		-1	1
1	1	1	I	I	1	11	11	1	1	1	-	-	-1	-1	1	--
II	1	1	1	1	I	1	1	$1-1$	1	1	1	\cdots		-	--	-
1	1	1	I	I	1	1	11	1	1	1	1	1		1	-1	-
1	1	1	1	1	1	1	I	1	1	1	,	1				1
	11	11	1	1	1	I	1		$1-1$	1						

Genome alignment in an excel spreadsheet

K15 $=$ INDEX(\$AA\$2:\$AD\$5, MATCH(K\$8,\$\$\$2:\$Z\$5,0), MATCH(\$E15,\$AA\$1:\$AD\$1,0)

Local score of matching

 characters $\mathrm{S}_{1}[\mathrm{i}]$ and $\mathrm{S}_{2}[\mathrm{j}]$K34
$=C O N C A T E N A T E\left(I F\left(A D 15=A D 14+\$ A E \$ 2,\left.^{\prime \prime}\right|^{\frac{33}{34}, " \prime \prime}\right)\right.$,
IF(AD15=AC15+\$AE\$2,"--",""),
IF(AD15=AC14+K15,"\",""))|

Is the max alignment score coming from the top ("|"), from the left ("--") or from the diagonal up ("l") (show all of them, cuz we can)

K53
$=1 F($ AD34>0, IF(AND(ISNUMBER(SEARCH("\",L35)),AE35>0), CONCATENATE(K\$8,L54),
IF(AND(ISNUMBER(SEARCH("|",K35)),AD35>0), CONCATENATE("-",K54), IF(AND(ISNUMBER(SEARCH("-",L34)),AE34>0), CONCATENATE(K\$8,L53), "BADABOOM!"))),
meccan" cas"

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Variations on initialization, termination, update rule
- Varying gap penalties, algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Deterministic linear-time exact string matching

- Key insight: gather more info from each comparison
- Pre-processing, Z-algorithm, Boyer-More, KMP

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Variations on initialization, termination, update rule
- Varying gap penalties, algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Probabilistic foundations of sequence alignment

- Mismatch penalties, BLOSUM and PAM matrices
- Statistical significance of an alignment score

Intro to Local Alignments

- Statement of the problem
- A local alignment of strings s and t is an alignment of a substring of s with a substring of t
 wh a substring oft
- Why local alignments?
- Small domains of a gene may be only conserved portions
- Looking for a small gene in a large chromosome (search)
- Large segments often undergo rearrangements

Global alignment

Local alignment

Global Alignment

Local alignment

Needleman-Wunsch algorithm

$$
\text { Initialization: } \quad F(0,0)=0
$$

Iteration:

$F(i, j)=\max \left\{\begin{array}{l}F(i-1, j)-d \\ F(i, j-1)-d \\ F(i-1, j-1)+s\left(x_{i}, y_{j}\right)\end{array}\right.$

Termination:
Bottom right

Smith-Waterman algorithm

Initialization: $\quad F(0, j)=F(i, 0)=0$

Iteration:
$F(i, j)=\max \left\{\begin{array}{l}0 \\ F(i-1, j)-d \\ F(i, j-1)-d \\ F(i-1, j-1)+s\left(x_{i}, y_{j}\right)\end{array}\right.$

Termination: Anywhere

More variations on the theme: semi-global alignment

- Sequence alignment variations

Global

Complete alignment

Stretches of similarity

Semi-global

Top row or left column

Top left	Top row/left col.	Top row or left column
$F(i-1, j)-d$ $F(i, j-1)-d$ $F(i-1, j-1)+s\left(x_{i}, y_{j}\right)$	0 $F(i-1, j)-d$ $F(i, j-1)-d$ $F(i-1, j-1)+s\left(x_{i}, y_{j}\right)$	$F(i-1, j)-d$ $F(i, j-1)-d$ $F(i-1, j-1)+s\left(x_{i}, y_{j}\right)$
Bottom right	Anywhere	Bottom row or right column

Sequence alignment with generalized gap penalties

- Implementing a generalized gap penalty function F(gap_length)

Initialization: same

Iteration:
$F(i, j)=\max \left\{\begin{array}{l}F(i-1, j-1)+s\left(x_{i}, y_{j}\right) \\ \max _{k=0 . . . i-1} F(k, j)-\gamma(i-k) \\ \max _{k=0 . . j-1} F(i, k)-\gamma(j-k)\end{array}\right.$

Termination: same

Running Time: $\mathrm{O}\left(\mathrm{N}^{2} \mathrm{M}\right)$ (cubic) Space: $\quad \mathrm{O}(\mathrm{NM})$

Do we have to be so general?

Algorithmic trade-offs of varying gap penalty functions

Linear gap penalty: $w(k)=k^{*} p$

- State: Current index tells if in a gap or not
- Achievable using quadratic algorithm (even w/ linear space)

Quadratic: $w(k)=p+q^{*} k+r k^{2}$.

- State: needs to encode the length of the gap, which can be $O(n)$
- To encode it we need $\mathrm{O}(\log n)$ bits of information. Not feasible

Affine gap penalty: $w(k)=p+q^{*} k$, where $q<p$

- State: add binary value for each sequence: starting a gap or not
- Implementation: add second matrix for already-in-gap (recitation)
${ }^{(\mathrm{n})}$ rovVV
Length (mod 3) gap penalty for protein-coding regions
- Gaps of length divisible by 3 are penalized less: conserve frame
- This is feasible, but requires more possible states
- Possible states are: starting, $\bmod 3=1, \bmod 3=2, \bmod 3=0$

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Variations on initialization, termination, update rule
- Varying gap penalties, algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Deterministic linear-time exact string matching

- Key insight: gather more info from each comparison
- Pre-processing, Z-algorithm, Boyer-More, KMP

Linear-time string matching

- When looking for exact matches of a pattern (no gaps)
- Karp-Rabin algorithm (probabilistic linear time):
- Interpret String numerically
- Start with 'broken' version of the algorithm
- Progressively fix it to make it work
- Deterministicc linear-time solutions exist (not this term):
- Z-algorithm / fundamental pre-processing, Gusfield
- Boyer-Moore and Knuth-Morris-Pratt algorithms are earliest instantiations, similar in spirit
- Suffix trees: beautiful algorithms, many different variations and applications, limited use in CompBio
- Suffix arrays: practical variation, Gene Myers

Karp-Rabin algorithm

- Key idea:
compute x
compute x
for i in [1..n]:
for i in [1..n]:
compute }\mp@subsup{Y}{i}{
compute }\mp@subsup{Y}{i}{
if x == y y :
if x == y y :
print "match at S[i]"
print "match at S[i]"
(this does not actually work)
- Interpret strings as numbers: fast comparison

Karp-Rabin algorithm

$$
\begin{aligned}
& y_{3}=59,023 \\
& \mathrm{P}=\begin{array}{|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 \\
\hline
\end{array} \\
& x=31,415
\end{aligned}
$$

(this actually works)

- Key idea:
- Interpret strings as numbers: fast comparison
- To make it work:
(a) Compute next number based on previous one $\rightarrow \mathrm{O}(1)$
(b) Hashing $(\bmod p) \rightarrow$ keep the numbers small $\rightarrow \mathrm{O}(1)$
(c) Deal with spurious hits due to hashing collisions

(a) Computing t_{s+1} based on t_{s} in constant time

left shift new low-order

old high-order bit

digit
$14,152=(31,415-3 * 10,000) * 10+2$
$14,152=$? function $(31,415)$

- Middle digits of the number are already computed Shift them to the left \leftarrow
- Remove the high-order bit
- Add the low-order bit
- General case:

$$
t_{s}=T[s+1] 2^{m-1}+T[s+2] 2^{m-2}+\ldots+T[s+m] 2^{0}
$$

(b) Dealing with long numbers in constant time

Problem:

- To get $\mathrm{O}(\mathrm{n})$ time, need to perform each operation in $\mathrm{O}(1)$ time
- But if arguments are m-bit long (2^{m} range), can take $O(m)$ time
- Need to reduce number range to something more manageable

Solution:

- Hashing: Mapping keys \boldsymbol{k} from large universe U (of strings/numbers) into the 'hash' of each key $\boldsymbol{h}(\boldsymbol{k})$, in smaller space [1..m]
- Many hash functions possible, w/ theoretical \& practical properties:
- Reproducibility: $x=y \rightarrow h(x)=h(y)$ (hash of x always the same)
- Uniform output distrib: $x \neq y \rightarrow P(h(x)=h(y))=1 / m$, for any input dist New problem: Collisions

(c) Dealing with collisions, due to hashing

- Consequences of (mod p) 'hashing'
- Good: Enable fast computation (use small numbers)
- Bad: Leads to spurious hits (collisions)
- Dealing with the bad:

1. Verify that a hit correspond to valid match
\rightarrow re-compute equality for entire string (not just hash)
2. Avoid worst-case behavior of many collisions $\mathrm{w} / \mathrm{bad} \mathrm{m}$
\rightarrow Choose random m

- Algorithm and its analysis becomes more complex:

1. Compute expected run time, include expected cost of verification
2. Show probability of spurious hits is small, expected run time is linear

Karp-Rabin algorithm: Putting it all together

$$
\begin{aligned}
& \mathrm{T}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 9 & 0 & 2 & 3 & 1 & 4 & 1 & 5 & 2 & 6 & 7 & 3 & 9 & 9 & 2 & 1 \\
\hline
\end{array} \\
& y_{1}=23,590 \quad y_{7}=31,415 \\
& \mathrm{y}_{2}=35,902 \\
& y_{3}=59,023 \\
& \mathrm{P}=\begin{array}{|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 \\
\hline
\end{array} \\
& x=31,415
\end{aligned}
$$

- Key idea: Semi-numerical computation
- Idea: Interpret strings as numbers => fast comparison (other semi-numerical methods: Fast Fourier Transform, Shift-And)
- To make it work:
(a) Compute next number based on previous one $\rightarrow \mathrm{O}(1)$
(b) Hashing $(\bmod p) \rightarrow$ keep the numbers small $\rightarrow \mathrm{O}$ (1)
(c) Dealing with collisions \rightarrow Randomized p, expected run time $\rightarrow \mathrm{O}(1) \exp$

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Deterministic linear-time exact string matching

- Key insight: gather more info from each comparison
- Pre-processing, Z-algorithm, Boyer-More, KMP

Sequence Alignment vs. Sequence Database Search

- Sequence Alignment
- Assumes sequences have some common ancestry
- Finding the "right" alignment between two sequences
- Evolutionary interpretation: min \# events, min cost
- Sequence Database Search
- Given a query (new seq), and target (many old seqs), ask: which sequences (if any) are related to the query
- Individual alignments need not be perfect: Once initial matches are reported, we can fine-tune them later
- Query must be very fast for a new sequence
- Most sequences will be completely unrelated to query
- Exploit distinct nature of database search problem

Speeding up your searches in dB setting

- Exploit nature of the problem (many spurious hits)
- If you're going to reject any match with idperc <=90, then why bother even looking at sequences which don't have a stretch of 10 nucleotides in a row.
- Pre-screen sequences for common long stretches
- Put the speed where you need it (pre-processing)
- Pre-processing the database is off-line.
- Once the query arrives, must act fast
- Solution: content-based indexing and BLAST
- Example: index 10-mers.
- Only one $10-\mathrm{mer}$ in 4^{10} will match, one in a million (even with 500 k-mers, only 1 in 2000 will match).
- Additional speedups are possible

BLAST

Basic local alignment search tool SF Altschul, W Gish, W Miller, EW Myers... - Journal of molecular ..., 1990 - Elsevier ... In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity. References. ... Appl. Biosci. (1990). Karlin and Altschul, 1990; S. Karlin, SF Altschul; Proc. Nat. Acad. ...

Cited by 55606 Related articles All 103 versions Web of Science: 38161 Cite Save
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs SF Altschul, TL Madden, AA Schäffer... - Nucleic acids ..., 1997-Oxford Univ Press
... Received June 20, 1997. Accepted July 16, 1997. Next Section. Abstract. The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. ... Cited by 55519 Related articles All 148 versions Web of Science: 38680 Cite Save

- Two key insights:
- Hashing:

- Like Karp-Rabin, semi-numerical string matching
- Neighborhood search:
- Can find hits even when no exact k-mer matches

Blast Algorithm Overview

- Receive query

1. Split query into overlapping words of length W
2. Find neighborhood words for each word until threshold T
3. Look in table where these neighbor words occur: seeds S
4. Extend seeds S until score drops off under X

- Report significance and alignment of each match

Why BLAST works(1): Pigeonhole and W-mers

- Pigeonhole principle
- If you have 2 pigeons and 3 holes, there must be at least one hole with no pigeon

- Pigeonholing mis-matches
- Two sequences, each 9 amino-acids, with 7 identities
- There is a stretch of 3 amino-acids perfectly conserved
- In general:
- Sequence length: n
- Identities: t
- Can use W-mers for $\mathrm{W}=[\mathrm{n} /(\mathrm{n}-\mathrm{t}+1)$]

Extensions to the basic algorithm

- Ideas beyond W-mer indexing? Desirata:
- Faster
- Better sensitivity (fewer false negatives)

1) Filtering: Low complexity regions cause spurious hits

- Filter out low complexity in your query
- Filter most over-represented items in your database

2) Two-hit BLAST

- Two smaller W-mers are more likely than one longer one
- Therefore it's a more sensitive searching method to look for two hits instead of one, with the same speed.
- Improves sensitivity for any speed, speed for any sensitivity

3) Beyond W-mers, hashing with non-consecutive k-mers (combs)

- Next slide

Extension 3: Combs and Random Projections

Key idea:

- No reason to use only consecutive symbols
- Instead, we could use combs, e.g.,

$$
\text { RGIKW } \rightarrow \text { R*IK* , RG**W, ... }
$$

- Indexing same as for W-mers:
- For each comb, store the list of positions in the database where it occurs
- Perform lookups to answer the query
- How to choose the combs? At random
- Random projections: Califano-Rigoutsos'93, Buhler'01, Indyk-Motwani'98
- Choose the positions of * at random
- Analyze false positives and false negatives

Performance Analysis:

- Assume we select k positions, which do not contain *, at random with replacement
- What is the probability of a false negative ?
- At most: 1-idperck
- In our case: 1-(7/9) ${ }^{4}=0.63 \ldots$
- What is we repeat the process I times, independently?
- Miss prob. $=0.63$
- For l=5, it is less than 10\%

Query: RKIWGDPRS
Datab.: RKIVGDRRS
$\mathrm{k}=4$

Query: *KI*G***S
Datab.: *KI*G***S

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Deterministic linear-time exact string matching

- Key insight: gather more info from each comparison
- Pre-processing, Z-algorithm, Boyer-More, KMP

The exact matching problem

- Inputs:
- a string P, called the pattern
- a longer string T, called the text
- Output:
- Find all occurrences, if any, of pattern \boldsymbol{P} in text \boldsymbol{T}
- Example

$$
\begin{aligned}
& \mathrm{P}=\begin{array}{|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{a} \\
\mathrm{~T}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
\end{array} . \begin{array}{ll}
& \\
\hline
\end{array}
\end{aligned}
$$

Basic string definitions

$$
\mathrm{S}=\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

- A string S
- Ordered list of characters
- Written contiguously from left to write
- A substring S[i..j]
- all contiguous characters from i to j
- Example: S[3..7] = abaxa
- A prefix is a substring starting at 1
- A suffix is a substring ending at $|S|$
- $|S|$ denotes the number of characters in string S

The naïve string-matching algorithm

- NAÏVE STRING MATCHING
$-\mathrm{n} \leftarrow$ length[T]
$-\mathrm{m} \leftarrow$ length $[P]$
- for shift $\leftarrow 0$ to n

Running time:

- do if $\mathrm{P}[1 . . \mathrm{m}]==\mathrm{T}[$ shift+1 .. shift+m]
- then print "Pattern occurs with shift" shift

O(n)
$\rightarrow \mathrm{O}(\mathrm{m})$

- Where the test operation in line 4 :
- Tests each position in turn
- If match, continue testing
- else: stop
- Running time ~ number of comparisons
number of shifts (with one comparison each)
+ number of successful character comparisons

Comparisons made with naïve algorithm

- Worst case running time:
- Test every position
- P=aaaa, T=aaaaaaaaaaa
- Best case running time:
- Test only first position
- P=bbbb, T=aaaaaaaaaaa
$s=3$

b	a	a	b	a	c	a	b
				a b			

Can we do better?

Key insight: make bigger shifts!

- If all characters in the pattern are the same:

a	a	X	?	? ?	?	?	?	?		?
$\rightarrow \rightarrow \rightarrow \mathrm{a}$										
?	?	?	X		?	?		?	?	

?	?	?	?	a	a a	a	a	a	a	?	?	
					$\rightarrow \mathrm{a}$	a	a	a	a	a		

$$
\begin{array}{rl|l|l|l|l|l|l|l|l|l|}
\hline ? & ? & ? & ? & ? & ? & \mathrm{a} & \mathrm{a} & \mathrm{a} & ? \\
& & \rightarrow & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} & \mathrm{a} \\
\hline
\end{array}
$$

Information gathered at every comparison

Knowledge of the internal structure of P

Number of comparisons: O(n)

Key insight: make bigger shifts!

- If all characters in the pattern are different:

a	b	c	d	?	?	?	$?$	$?$	$?$
$\rightarrow \rightarrow \rightarrow \rightarrow$	a	b	c	d					

?	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$	$?$
			$\rightarrow \mathrm{a}$	b	c	d			

Number of comparisons:
-At most n matching comparisons
-At most n non-matching comparisons
\rightarrow Number of comparisons: $\mathrm{O}(\mathrm{n})$

Key insight: make bigger shifts!

- Special case:
- If all characters in the pattern are the same: $O(n)$
- If all characters in the pattern are different: $O(n)$
- General case:
- Learn internal redundancy structure of the pattern
- Pattern pre-processing step
- Methods:
- Fundamental pre-processing
- Knuth-Morris-Pratt
- Finite State Machine

Fundamental pre-processing

- Learning the redundancy structure of a string S

- $\mathrm{Zi}=$ length of longest prefix in common for $\mathrm{S}[\mathrm{i} .$.$] and \mathrm{S}$ (Length of the longest prefix of S[i..] that's also a prefix of S)

Fundamental pre-processing

- Learning the redundancy structure of a string S

$$
\begin{aligned}
& \mathrm{S}=\begin{array}{ll|l|l|l|l|l|l|l|l}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{a} & \mathrm{a} \\
\hline
\end{array} \mathrm{a} \\
& Z=\begin{array}{lllllllllll}
0 & 1 & 0 & 0 & \mathbf{3} & \mathbf{1} & 0 & 0 & 2 & 2 & 1
\end{array} \\
& \text { Z-box }=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & a & b & c & a & a & b & x & a & a & a \\
\hline & & & & & & & & & & \\
\hline
\end{array} \\
& r=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline a & a & b & c & a & a & b & x & a \\
\hline
\end{array} \\
& I=\begin{array}{|l|l|l|l|l|l|l|}
\hline a & a & b & a & a & b & a \\
\hline
\end{array}
\end{aligned}
$$

Can we compute $\mathrm{Z}, \mathrm{r}, \mathrm{I}$ in linear time $\mathrm{O}(|\mathrm{S}|)$?

Computing Z_{k} given $Z_{1} . . Z_{k-1}$

- Case 1: k is outside a Z-box: simply compute Z_{k}

- Case 2: k is inside a Z-box: Look up $Z_{k^{\prime}}$

\rightarrow Case 2a: Zk' < r-k
\rightarrow Case 2b: Zk' >= r-k

Computing Z_{k} given $Z_{1} . . Z_{k-1}$

Case 2a: $\mathrm{Z}_{\mathrm{k}^{\prime}}<\mathrm{r}-\mathrm{k}$

Set $Z_{k}=Z_{k}$,

Case 2b: $Z_{k^{\prime}}>=r-k$

Explicitly compare starting at $\mathrm{r}+1$

Putting it all together

- FUNDAMENTAL-PREPROCESSING(S):
$Z_{2}, \mathrm{I}, \mathrm{r}=$ explicitly compare $\mathrm{S}[1 .$.$] with \mathrm{S}[2 .$. for k in 2..n:
if $k>r: Z_{k}, l, r=$ explicitly compare $S[1 .$.$] with S[k .$.
if $k<=r$:
if $Z_{k^{\prime}}<(r-k): Z_{k}=Z_{k^{\prime}}$
else:

$$
\begin{aligned}
& Z_{k}=\text { explicitly compare } S[r+1 . .] \text { with } S[(r-k)+1 . .] \\
& I=k \\
& r=l+Z_{k}
\end{aligned}
$$

Correctness of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_{k}

Case 2a: Inside Z-box and $Z_{k^{\prime}}<r-k$: set $Z_{k}=Z_{k^{\prime}}$

Case 2b: Inside Z-box and $Z_{k^{\prime}}$ >= r-k: explicitly compute starting at r+1

Running time of Z computation

Case 1: k is outside a Z-box: explicitly compute Z_{k}

Case 2a: Inside Z-box and $Z_{k}<r-k$: set $Z_{k}=Z_{k}$,

Case 2b: Inside Z-box and $Z_{k^{\prime}}$ >= r-k: explicitly compute starting at r+1

What's so fundamental about Z?

- Learning the redundancy structure of a string S

$$
\begin{aligned}
& S=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline a & a & b & c & a & a & b & x & a & a & a \\
\hline
\end{array} \\
& Z=\begin{array}{lllllllllll}
0 & 1 & 0 & 0 & 3 & 1 & 0 & 0 & 2 & 2 & 0
\end{array} \\
&
\end{aligned}
$$

- $Z_{i}=$ fundamental property of internal redundancy structure
- Most pre-processings can be expressed in terms of Z
- Length of the longest prefix starting/ending at position i
- Length of the longest suffix starting/ending at position i

Back to string matching

- Given the fundamental pre-processing of pattern P
- Compare pattern P to text T
- Shift P by larger intervals based on values of Z
- Three algorithms based on these ideas
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithm
- Z algorithm

Knuth-Morris-Pratt algorithm

- Pre-processing:
- $\mathrm{Sp}_{\mathrm{i}}(\mathrm{P})=$ length of longest proper suffix of $\mathrm{P}[1 . . \mathrm{i}]$ that matches a prefix of P

$$
\begin{aligned}
& \mathrm{P}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathbf{f} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathbf{d} \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\hline
\end{array}
\end{aligned}
$$

- No other than the right-hand-side of the Z-boxes

Knuth-Morris-Pratt running time

- Number of comparisons bounded by characters in T
- Every comparison starts at text position where last comparison ended
- Every shift results in at most one extra comparison
- At most |T| shifts \rightarrow Running time bounded by $2^{*}|T|$

Boyer-Moore algorithm

$$
\begin{aligned}
& \mathrm{T}=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{b} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{x} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} \\
\hline \mathrm{P}=\begin{array}{|l|l|l|l|l|l}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{~b} & \mathrm{x} \\
\hline
\end{array}
\end{array} . \begin{array}{l}
\text { and }
\end{array} \\
&
\end{aligned}
$$

- Three fundamental ideas:

1. Right-to-left comparison
2. Alphabet-based shift rule
3. Preprocessing-based shift rule

- Results in:
- Very good algorithm in practice
- Rule 2 results in large shifts and sub-linear time
- for larger alphabets, ex: English text
- Rule 3 ensures worst-case linear behavior
- even in small alphabets, ex: DNA sequences

The \mathbf{Z} algorithm

$\mathrm{P}+\mathrm{T}=$	a	b	a	b	a	$\mathbf{\$}$	b	a	a	b	a	c	a	b	a	b	a	d

- The Z algorithm
- Concatenate P + '\$' + T
- Compute fundamental pre-processing $O(m+n)$
- Report all starting positions i for which $Z_{i}=|P|$

Today's Goal: Diving deeper into alignments

1. Global alignment vs. Local alignment

- Needleman-Wunsch and Smith-Waterman
- Varying gap penalties and algorithmic speedups

2. Linear-time exact string matching (expected)

- Karp-Rabin algorithm and semi-numerical methods
- Hash functions and randomized algorithms

3. The BLAST algorithm and inexact matching

- Hashing with neighborhood search
- Two-hit blast and hashing with combs

4. Deterministic linear-time exact string matching

- Key insight: gather more info from each comparison
- Pre-processing, Z-algorithm, Boyer-More, KMP

MIT OpenCourseWare
http://ocw.mit.edu
6.047 / 6.878 / HST. 507 Computational Biology

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

