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Module 1: Aligning and modeling genomes 

• Module 1: Computational foundations 
– Dynamic programming: exploring exponential spaces in poly-time 
– Introduce Hidden Markov Models (HMMs): Central tool in CS 
– HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring 

• This week: Sequence alignment / comparative genomics 
– Local/global alignment: infer nucleotide-level evolutionary events 
– Database search: scan for regions that may have common ancestry 

• Next week: Modeling genomes / exon / CpG island finding 
– Modeling class of elements, recognizing members of a class 
– Application to gene finding, conservation islands, CpG islands 
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Genome-wide alignments reveal orthologous segments 

• Genome-wide alignments span entire genome 
• Comparative identification of functional elements 

100 genes 

Courtesy of Don Gilbert. Used with permission.
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Comparative genomics reveals conserved regions 

• Comparative genomics can reveal functional elements 
– For example:  exons are deeply conserved to mouse, chicken, fish 
– Many other elements are also strongly conserved: exons / regulatory? 

• Develop methods for estimating the level of constraint 
– Count the number of edit operations, number of substitutions and gaps 
– Estimate the number of mutations (including estimate of back-mutations) 
– Incorporate information about neighborhood: conservation ‘windows’ 
– Estimate the probability of a constrained ‘hidden state’: HMMs next week 
– Use phylogeny to estimate tree mutation rate, or ‘rejected substitutions’ 
– Allow different portions of the tree to have different rates: phylogenetics 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Evolutionary signatures for diverse functions 
Protein-coding genes 

 - Codon Substitution Frequencies 
 - Reading Frame Conservation 

RNA structures 

 - Compensatory changes 
 - Silent G-U substitutions 

microRNAs 

 - Shape of conservation profile 
 - Structural features: loops, pairs 
 - Relationship with 3’UTR motifs 

Regulatory motifs 

 - Mutations preserve consensus 
 - Increased Branch Length Score 
 - Genome-wide conservation 

Stark et al, Nature 2007 

Courtesy of Macmillan Publishers Limited. Used with permission.

Source: Stark, Alexander et al. "Discovery of functional elements in 12 Drosophila

genomes using evolutionary signatures." Nature 450, no. 7167 (2007): 219-232. 5

10.1038/nature06340
10.1038/nature06340


Alignment: Evolution preserves functional elements! 

         Scer   TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACA 
         Spar   CTATGTTGATCTTTTCAGAATTTTT-CACTATATTAAGATGGGTGCAAAGAAGTGTGATTATTATATTACATCGCTTTCCTATCATACACA 
         Smik   GTATATTGAATTTTTCAGTTTTTTTTCACTATCTTCAAGGTTATGTAAAAAA-TGTCAAGATAATATTACATTTCGTTACTATCATACACA 
         Sbay   TTTTTTTGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAGAAAGTGTAGTCACATCATGCTATCT-GTCACTATCACATATA 
                 * * ****  * *  *   ** ** *  *   **           **  ** * *    *    **   **    *  * * ** * * * 
 
 
Scer   TATCCATATCTAATCTTACTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG 
Spar   TATCCATATCTAGTCTTACTTATATGTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG 
Smik   TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG 
Sbay   TAGATATTTCTGATCTTTCTTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG 
       **   ** ***  **** ******* **   *  *   *     *  *    *  *       **  **      * *** *    ***    *  *  * 
 
 
Scer   CTTAACTGCTCATTGC-----TATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCT 
Spar   CTAAACTGCTCATTGC-----AATATTGAAGTACGGATCAGAAGCCGCCGAGCGGACGACAGCCCTCCGACGGAATATTCCCCTCCGTGCGTCGCCGTCT 
Smik   TTTAGCTGTTCAAG--------ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT 
Sbay   TCTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT 
             **  **          ** ***** ******* ****** ***** ***  ****   * *** ***** * *  ****** ***    * *** 
 
 
 
Scer   TCACCGG-TCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA-----TACTAGCTTTT--ATGGTTATGAA 
Spar   TCGTCGGGTTGTGTCCCTTAA-CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC 
Smik   ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC 
Sbay   GTG-CGGATCACGTCCCTGAT-TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA-TGCCTGTAGTG--GCAGTTATGGT 
            ** *   ** *** *      *      ***** ** *  *   ****** **     *   * **     * *             ** ***   
 
 
 
Scer   GAGGA-AAAATTGGCAGTAA----CCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------TTAG--T 
Spar   AGGAACAAAATAAGCAGCCC----ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G 
Smik   CAACGCAAAATAAACAGTCC----CCCGGCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G 
Sbay   GAACGTGAAATGACAATTCCTTGCCCCT-CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG 
              ****    *         *   *****     ***              * * *    *  * *    *     *           **     
 
 
Scer   TTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG--ATGATTTTT-GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC-----TT 
Spar   GTTTT--TCTTATTCCTGAGACAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC-----TT 
Smik   TTCTCA--CCTTTCTCTGTGATAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA-----AT 
Sbay   TTTTCCGTTTTACTTCTGTAGTGGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA 
        * *      *    ***       * **   *  *     *** ***   *  *  **  ** * ********   ****    *               
 
Scer   TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATACCTCTATACT 
Spar   TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATACATCTATACT 
Smik   TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCTATACATACA 
Sbay   TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTATTCAACATTTGT 
       *   *     *     *      * *  **  ***   *  *        *        *  ** **  ** * *  * *    * ***       *    
 
Scer   TTAA-CGTCAAGGA---GAAAAAACTATA 
Spar   TTAT-CGTCAAGGAAA-GAACAAACTATA 
Smik   TCGTTCATCAAGAA----AAAAAACTA.. 
Sbay   TTATCCCAAAAAAACAACAACAACATATA 
       *    *   **  *    ** **  ** 

Gal10 Gal1 
Gal4 

GAL10 

GAL1 

TBP 

GAL4 GAL4 GAL4 

GAL4 

MIG1 

TBP MIG1 

Factor footprint 

Conservation island 

We can ‘read’ evolution to reveal functional elements 

Yeast (Kellis et al, Nature 2003), Mammals (Xie, Nature 2005), Fly (Stark et al, Nature 07) 6



Today’s goal:  
 

How do we actually align two genes? 
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Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 
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Genomes change over time 

A C G T C A T C A 

A C G T G A T C A 
mutation 

A G T G T C A 

A G T G T C A 

deletion 

A G T G T C A T 

begin 

end 

A G T G T C A T 
insertion 
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Goal of alignment:  Infer edit operations 

A C G T C A T C A 

A G T G T C A T 

begin 

end 

? 
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From Bio to CS: Formalizing the problem 
• Define set of evolutionary operations (insertion, deletion, mutation) 

– Symmetric operations allow time reversibility (part of design choice) 
 
 
 

(Exception: methylated CpG dinucleotides  TpG/CpA non-symmetric) 

Human Mouse 

Many possible transformations 

Minimum cost transformation(s) 

• Define optimality criterion (min number, min cost) 
–Impossible to infer exact series of operations (Occam’s razor: find min) 

• Design algorithm that achieves that optimality (or approximates it) 
–Tractability of solution depends on assumptions in the formulation 

Human Mouse Human Mouse 

Human Mouse x y x y 
x+y 

Bio CS 
Relevance Assumptions 

Special cases 
Tractability Tradeoffs 

Computability 

Algorithms 

Implementation 

Predictability 

Correctness 

Note: Not all decisions are conflicting (some are both relevant and tractable) 
(e.g. Pevzner vs. Sankoff and directionality in chromosomal inversions) 11



Formulation 1: Longest common substring 
• Given two possibly related strings S1 and S2 

– What is the longest common substring? (no gaps) 
 A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T C A T C A S1 

S2 T A G T G T C A 

offset: +1 

A C G T C A T C A S1 

S2 T A G T G T C A 

offset: -2 
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Formulation 2: Longest common subsequence 

• Given two possibly related strings S1 and S2 
– What is the longest common subsequence? (gaps allowed) 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A G T T C A LCSS 

Related to:  
Edit distance:  
• Number of changes 
   needed for S1S2 
• Uniform scoring 
  function 
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Formulation 3: Sequence alignment 

• Allow gaps (fixed penalty) 
– Insertion & deletion operations 
– Unit cost for each character inserted or deleted 

• Varying penalties for edit operations 
– Transitions (PyrimidinePyrimidine, PurinePurine) 
– Transversions (Purine  Pyrimidine changes) 
– Polymerase confuses Aw/G and Cw/T more often 

A G T C 
A +1 -½ -1 -1 
G -½ +1 -1 -1 
T -1 -1 +1 -½ 
C -1 -1 -½ +1 

Scoring function: 
Match(x,x) = +1 
Mismatch(A,G)= -½ 
Mismatch(C,T)= -½ 
Mismatch(x,y) = -1 

Transitions:  
AG, CT common 

(lower penalty) 
Transversions:  
All other operations  

purine pyrimid. 14



Formulation 4: Varying gap cost models 

1. Linear gap penalty 
– Same as before 

2. Affine gap penalty 
– Big initial cost for starting or ending a gap 
– Small incremental cost for each additional character 

3. General gap penalty 
– Any cost function 
– No longer computable using the same model 

4. Frame-aware gap penalty 
– Multiples of 3 disrupt coding regions 

5. Seek duplicated regions, rearrangements, … 
– Etc 

15



How many alignments are there? 

• Longest ‘non-boring’ alignment: n+m entries 
– Otherwise a gap will be aligned to a gapcondense 

• Alignment is equivalent to gap placement 
– (n+m choose n) ways to choose S1 placement 
– At each position yes/no answer of placing character 
– Exponential number of possible placements 

• Exponential number of sequence alignment 
– Enumerating and scoring each of them not an option 
– Need faster solution for finding best alignment 

A C G T C A T C A 

G T C A 

S1 

S2 G T A T 

Need polynomial algorithm to find best alignment  
amongst an exponential number of possible alignments!  DP 
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Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 
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A simple introduction to the principles of 
Dynamic Programming  

Turning exponentials into polynomials 

18



Computing Fibonacci Numbers 

• Fibonacci numbers 

5 

8 

13 

21 

34 

55 

3 
2 

F6=F5+F4=(F4+F3)+(F3+F2))=….=(3+2)+(2+1)=5+3=8 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Fibonacci numbers are ubiquitous in nature 

Rabbits per generation Leaves per height 

Romanesque spirals Nautilus size Coneflower spirals Leaf ordering 

Leonardo Pisano  

Fibonacci 

© sources unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 20
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Computing Fibonacci numbers: Top down 
• Fibonacci numbers are defined recursively:  

– Python code 
 
def fibonacci(n):  

if n==1 or n==2: return 1 

return fibonacci(n-1) + fibonacci(n-2) 
 

• Goal:  Compute nth Fibonacci number.  
– F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2) 
– 1,1,2,3,5,8,13,21,34,55,89,144,233,377,… 

• Analysis:   
– T(n) = T(n-1) + T(n-2) = (…) = O(2n) 

 
 

21



Computing Fibonacci numbers: Bottom up 
• Bottom up approach 

– Python code 
 
 
 
 
 
 

– Analysis: T(n) = O(n) 

def fibonacci(n):  

 fib_table[1] = 1 

 fib_table[2] = 1 

 for i in range(3,n+1):  

      fib_table[i] = fib_table[i-1]+fib_table[i-2] 

 return fib_table[n] 

? F[12] 
89 F[11] 
55 F[10] 
34 F[9] 
21 F[8] 
13 F[7] 
8 F[6] 
5 F[5] 
3 F[4] 
2 F[3] 
1 F[2] 
1 F[1] 

fib_table 

22



Lessons from iterative Fibonacci algorithm 

• What did the iterative solution do? 
– Reveal identical sub-problems 
– Order computation to enable result reuse 
– Systematically filled-in table of results 
– Expressed larger problems from their subparts 

• Ordering of computations matters 
– Naïve top-down approach very slow 

• results of smaller problems not available 
• repeated work 

– Systematic bottom-up approach successful 
• Systematically solve each sub-problem 
• Fill-in table of sub-problem results in order.  
• Look up solutions instead of recomputing 

 

? F[12] 
89 F[11] 
55 F[10] 
34 F[9] 
21 F[8] 
13 F[7] 
8 F[6] 
5 F[5] 
3 F[4] 
2 F[3] 
1 F[2] 
1 F[1] 

fib_table 
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Dynamic Programming in Theory 

• Hallmarks of Dynamic Programming 
– Optimal substructure: Optimal solution to problem 

(instance) contains optimal solutions to sub-problems 
– Overlapping subproblems:  Limited number of distinct 

subproblems, repeated many many times 
• Typically for optimization problems (unlike Fib example) 

– Optimal choice made locally:  max( subsolution score) 
– Score is typically added through the search space 
– Traceback common, find optimal path from indiv. choices 

• Middle of the road in range of difficulty 
– Easier: greedy choice possible at each step 
– DynProg: requires a traceback to find that optimal path 
– Harder: no opt. substr., e.g. subproblem dependencies 

24



Hallmarks of optimization problems 

1. Optimal substructure 
An optimal solution to a problem (instance) 
contains optimal solutions to subproblems. 

2. Overlapping subproblems 
A recursive solution contains a “small” number 

of distinct subproblems repeated many times. 

3. Greedy choice property 
Locally optimal choices lead 
to globally optimal solution 

Greedy algorithms Dynamic Programming 

Greedy Choice is not possible 

Globally optimal solution requires 
trace back through many choices 

25



Dynamic Programming in Practice 

• Setting up dynamic programming 
1. Find ‘matrix’ parameterization (# dimensions, variables) 
2. Make sure sub-problem space is finite! (not exponential) 

• If not all subproblems are used, better off using memoization 
• If reuse not extensive, perhaps DynProg is not right solution! 

3. Traversal order: sub-results ready when you need them 
• Computation order matters!  (bottom-up, but not always 

obvious) 
4. Recursion formula:  larger problems = F(subparts) 
5. Remember choices: typically F() includes min() or max() 

• Need representation for storing pointers, is this polynomial ! 
• Then start computing 

1. Systematically fill in table of results, find optimal score 
2. Trace-back from optimal score, find optimal solution 

26



Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 

27



(3) How do we apply dynamic programming  
 

to sequence alignment ? 

28



Key insight #1:  Score is additive, smaller to larger 

• Compute best alignment recursively 
– For a given aligned pair (i, j), the best alignment is: 

•     Best alignment of S1[1..i]     and S2[1..j] 
• +  Best alignment of S1[    i..n] and S2[    j..m] 

– Proof:  cut-and-paste argument (see 6.046) 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

i 

j 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

i 

j 

i 

j  
This allows a single recursion (top-left to bottom-right) instead of 
two recursions (middle-to-outside top-down) 29



Key insight #2: compute scores recursively 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T 

T A G T G 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

 Compute alignment of CGT vs. TG exactly once 
30



Key insight #3: sub-problems are repeated  reuse! 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T 

T A G T G 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

S1 

C G T C A T C A 

T G T C A 

S1 

S2 

 Identical sub-problems!  We can reuse our work! 
31



Solution #1 – Memoization 

• Create a big dictionary, indexed by aligned seqs 
– When you encounter a new pair of sequences 
– If it is in the dictionary: 

• Look up the solution 

– If it is not in the dictionary 
• Compute the solution 
• Insert the solution in the dictionary 

• Ensures that there is no duplicated work 
– Only need to compute each sub-alignment once! 

 
 

Top down approach 

32



Solution #2 – Dynamic programming 

• Create a big table, indexed by (i,j) 
– Fill it in from the beginning all the way till the end 
– You know that you’ll need every subpart 
– Guaranteed to explore entire search space 

• Ensures that there is no duplicated work 
– Only need to compute each sub-alignment once! 

• Very simple computationally! 

Bottom up approach 

33



Key insight #4: Optimal prefix almt score   Matrix entry 

S1[1..i] i S1[i..n] 
 
 
 

S2[1..j] 

j S 
 
 
 

S2[ j..m] 

34



Key insight #5: Optimal alignment  Matrix path 

A C G T C A T C A 
T 
A 
G 
T 
G 
T 
C 
A 

S1 

S2 

A C G T C A T C A 

T A G T G T C A 

A 
G 

T 
C/G 

T 
C 

A 

Goal:   
Find best path 

through the matrix 

Best alignment  Best path through the matrix 

35



DP approach: iteratively grow best alignment soltn 

• Compute all alignment scores from the bottom up 
– Define M[i,j] prefix alignment score of S1[1..i] and S2[1..j] 
– Fill up table recursively from smaller to bigger alignments 

• Express alignment of S1[1..i+1] and S2[1..j+1]  M[i+1,j+1] 
– One of three possibilities: (1) extend alignment from M[i,j] 

(2) extend from M[i-1,j], or (3) extend from M[i,j-1] 
– Only a local computation, takes O(1) time! 

• Proof of correctness (cut-and-paste argument from 6.006) 
– Best alignment of S1[1..i+1] and S2[1..j+1] must be 

composed of best alignments of smaller prefix 
– Proof: otherwise could replace sub and get better overall 

A C G T C A T C A 

T A G T G T C A 

S1 

S2 

i 

j 

36



Computing alignments recursively: M[i,j]=F(smaller) 
• Local update rules, only look at neighboring cells:   

– Compute next alignment based on previous alignment 
– Just like Fibonacci numbers:  F[i] = F[i-1] + F[i-2] 
– Table lookup avoids repeated computation 

• Computing the score of a cell from smaller neighbors 
  M( i-1, j  ) -  gap 
– M(i,j) = max{ M( i-1, j-1) + score } 
  M(  i ,  j-1) -  gap 
– Only three possibilities for extending by one nucleotide: 

a gap in one species, a gap in the other, a (mis)match 
• Compute scores for prefixes of increasing length 

– Start with prefixes of length 1, extend by one each time, 
until all prefixes have been computed 

– When you reach bottom right, alignment score of 
S1[1..m] and S2[1..n] is alignment of full S1 and full S2  

– (Can then trace back to construct optimal path to it) 

(i,j) 

i-1 i 
j-1 

j 

37



Dynamic Programming for sequence alignment 

• Setting up dynamic programming 
1. Find ‘matrix’ parameterization 

• Prefix parameterization. Score(S1[1..i],S2[1..j])  M(i,j) 
• (i,j) only prefixes vs. (i,j,k,l) all substrings  simpler 2-d matrix 

2. Make sure sub-problem space is finite! (not exponential) 
• It’s just n2, quadratic (which is polynomial, not exponential) 

3. Traversal order: sub-results ready when you need them 
  
 

4. Recursion formula:  larger problems = Func(subparts) 
• Need formula for computing M[i,j] as function of previous results 
• Single increment at a time, only look at M[i-1,j], M[i,j-1], M[i-1,j-1] 

corresponding to 3 options: gap in S1, gap in S2, char in both 
• Score in each case depends on gap/match/mismatch penalties 

5. Remember choice: F() typically includes min() or max() 
• Remember which of three cells (top,left,diag) led to maximum 

Cols 
LR 

Rows 
topbot 

Diags 
topRbotL 

38



Step 1: Setting up the scoring matrix M[i,j] 
- A G T 

A 

A 

G 

C 

- 0 
Initialization:  
• Top left: 0 
Update Rule: 
M(i,j)=max{ 

 
 
 

} 
Termination: 
• Bottom right 

39



Step 2: Filling in the optimal scores from top left 
- A G T 

A 

A 

G 

C 

- 0 -2 

-2 1 

-1 0 

0 -1 

-4 -6 

-1 -3 

-4 -2 

-6 -3 

-8 -5 -2 -1 

-1 -1 

-1 -1 

-1 -1 

-1 -1 

-1 

Initialization:  
• Top left: 0 
Update Rule: 
M(i,j)=max{ 

• M(i-1 ,   j ) - 2 
• M(  i  , j-1) - 2 
• M(i-1 , j-1) -1 
• M(i-1 , j-1)+1 

} 
Termination: 
• Bottom right 

mismatch 

match 

gap 
gap 

1 

1 

1 

Path segment that lead to the optimal choice 
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Step 3: Trace back pointers to construct alignment 
- A G T 

A 

A 

G 

C 

- 0 -2 -4 -6 

-2 1 -1 -3 

-4 -1 0 -2 

-6 -3 0 -1 

-8 -5 -2 -1 

-1 -1 

-1 -1 

-1 -1 

-1 -1 

-1 

Initialization:  
• Top left: 0 
Update Rule: 
M(i,j)=max{ 

• M(i-1 ,   j ) - 2 
• M(  i  , j-1) - 2 
• M(i-1 , j-1) -1 
• M(i-1 , j-1)+1 

} 
Termination: 
• Bottom right 

1 

1 

1 mismatch 

match 

gap 
gap 

Path segments that lead to the globally optimal solution 
Path segments that lead to locally optimal choices 
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Genome alignment in an excel spreadsheet 

42



K15 

K34 

K53 
AD53 

AD34 

AD15 

K15 

K34 

K53 

AD53 

AD34 

AD15 

Local score of matching 
characters S1[i] and S2[j] 

Max alignment score of 
aligning prefix S1[1..i]  
and prefix S2[1..j] 

Is the max alignment score 
coming from the top (“|”), 
from the left (“--”) or from 
the diagonal up (“\”) 
(show all of them, cuz we can) 

Is the [i,j] part of an optimal 
path? (i.e. are chars S1[i] 
and S2[j] aligned to each 
other in an optimal path)  
(also count number of 
optimal paths/alignment 
through [i.j], cuz we can) 

Construct the optimal alignment for sequence S1 by 
adding in characters or gaps to increasingly large suffixes 
(and arbitrarily choose one path when multiple using nested if’s) Construct the optimal alignment for sequence S2 similarly to S1 

Genome alignment 
in an excel 
spreadsheet 
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What is missing? (5) Returning the actual path! 

• We know how to compute the best score 
– Simply the number at the bottom right entry 

• But we need to remember where it came from 
– Pointer to the choice we made at each step 

• Retrace path through the matrix 
– Need to remember all the pointers 

 

Time needed:  O(m*n) 
Space needed:  O(m*n) 

 

x1 …………………………  xM 

y
1
 …

…
…

…
…

…
…

…
…

…
  

y
N
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Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 
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If time permits… 
 

(4) Extensions to basic DP solution 
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Bounded Dynamic Programming 

Initialization: 
 F(i,0), F(0,j) undefined for i, j > k 
 
Iteration: 
For i = 1…M 
  For j = max(1, i – k)…min(N, i+k) 
 
   F(i – 1, j – 1)+ s(xi, yj) 
 F(i, j) = max F(i, j – 1) – d, if j > i – k(N) 
   F(i – 1, j) – d, if j < i + k(N) 
 
Termination: same 

x1 …………………………  xM 

y
1
 …

…
…

…
…

…
…

…
…

…
  
y

N
 

k(N) 

Slides credit: Serafim Batzoglou 47



Can we do better than O(n2)in the general case? 

• Reduced Orthogonal Vectors to PATTERN 
• Reduced PATTERN to EDIT DISTANCE 
• Proved EDIT DISTANCE is a SETH-hard problem 

• Faster edit dist. algorithm probably not a good term project 
48

Abstract removed due to copyright restrictions. 
Source: Backurs, Arturs, and Piotr Indyk. "Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false)."
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 51-58. ACM, 2015.

http://dx.doi.org/10.1145/2746539.2746612


F(i,j) 

Linear space alignment 
It is easy to compute F(M, N) in linear space 

Allocate ( column[1] ) 
Allocate ( column[2] ) 
 
For    i = 1….M 
 If   i > 1, then: 
  Free( column[i – 2] ) 
  Allocate( column[ i ] ) 
 For   j = 1…N 
  F(i, j) = …  
  

What about the pointers? 
49



Finding the best back-pointer for current column 

• Now, using 2 columns of space, we can compute 
 for k = 1…M, F(M/2, k), Fr(M/2, N-k) 
  
 PLUS the backpointers 
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Best forward-pointer for current column 

• Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k) 
• Also, we can trace the path exiting column M/2 from k*  

k* 
k* 
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Recursively find midpoint for left & right 

• Iterate this procedure to the left and right! 

N-k* 

M/2 M/2 

k* 
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Total time cost of linear-space alignment 

Total Time:  cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN) 
 
 Total Space: O(N) for computation, 
   O(N+M) to store the optimal alignment 

N-k* 

M/2 M/2 

k* 

53



Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 
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Additional insights 

Why the 2-dimentional parameterization worked 
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Summary 
• Dynamic programming 

– Reuse of computation 
– Order sub-problems.  Fill table of sub-problem results 
– Read table instead of repeating work (ex: Fibonacci) 

• Sequence alignment 
– Edit distance and scoring functions 
– Dynamic programming matrix 
– Matrix traversal path  Optimal alignment 

• Thursday:  Variations on sequence alignment 
– Local/global alignment, affine gaps, algo speed-ups 
– Semi-numerical alignment, hashing, database lookup 

• Recitation:   
– Dynamic programming applications 
– Probabilistic derivations of alignment scores 
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Goal: Sequence Alignment / Dynamic Programming 
1. Introduction to sequence alignment 

– Comparative genomics and molecular evolution 
– From Bio to CS: Problem formulation 
– Why it’s hard: Exponential number of alignments 

2. Introduction to principles of dynamic programming 
– Computing Fibonacci numbers: Top-down vs. bottom-up 
– Repeated sub-problems, ordering compute, table lookup 
– DP recipe: (1) Parameterization, (2) sub-problem space, 

(3) traversal order, (4) recursion formula, (5) trace-back 
3. DP for sequence alignment 

– Additive score, building up a solution from smaller parts 
– Prefix matrix: finite subproblems, exponential paths 
– Duality: each entryprefix alignment score; pathaligmnt 

4. Advanced topics: Dynamic Programming variants 
– Linear-time bounded DP(heuristic). Linear-space DP. Gaps 
– Importance of parameterization: 2-D vs. 4-D decomposition 
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