6.047/6.878/HST. 507

Computational Biology: Genomes, Networks, Evolution

Lecture 2

Sequence Alignment and Dynamic Programming

Module 1: Aligning and modeling genomes

Week	Date	Topic		Lec	Topic	Read*
1	Thu, Sep 10	Introduction		L1	Intro: Biology, Algorithms, Machine Learning, Course Overview	1
	Fri, Sep 11			R1	Recitation 1: Biology and Probability Review	
2	Tue, Sep 15	Module I: Aligning and Modeling Genomes	Foundations	L2	Alignment I: Dynamic Programming, Global and local alignment	2
	Thu, Sep 17			L3	Alignment II: Database search, Rapid string matching, BLAST, BLOSUM	3
	Fri, Sep 18			R2	Recitation 2: Deriving Parameters of Alignment, Multiple Alignment	
3	Tue, Sep 22		Frontiers	L4	Hidden Markov Models Part 1: Evaluation/Parsing, Viterbi, Forward algorithms	7
	Thu, Sep 24			L5	Hidden Markov Models Part 2: Posterior Decoding, Learning, Baum-Welch	8
	Fri, Sep 25				No classes - student holiday	
	Fri, Sep 25		Project Intro: about the projects, self introductions, mentor intro, example projects, teamwork 32D-50			

- Module 1: Computational foundations
- Dynamic programming: exploring exponential spaces in poly-time
- Introduce Hidden Markov Models (HMMs): Central tool in CS
- HMM algorithms: Decoding, evaluation, parsing, likelihood, scoring
- This week: Sequence alignment / comparative genomics
- Local/global alignment: infer nucleotide-level evolutionary events
- Database search: scan for regions that may have common ancestry
- Next week: Modeling genomes / exon / CpG island finding
- Modeling class of elements, recognizing members of a class
- Application to gene finding, conservation islands, CpG islands

Genome-wide alignments reveal orthologous segments

Courtesy of Don Gilbert. Used with permission.

(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- Genome-wide alignments span entire genome
- Comparative identification of functional elements

Comparative genomics reveals conserved regions

- Comparative genomics can reveal functional elements
- For example: exons are deeply conserved to mouse, chicken, fish
- Many other elements are also strongly conserved: exons / regulatory?
- Develop methods for estimating the level of constraint
- Count the number of edit operations, number of substitutions and gaps
- Estimate the number of mutations (including estimate of back-mutations)
- Incorporate information about neighborhood: conservation 'windows'
- Estimate the probability of a constrained 'hidden state': HMMs next week
- Use phylogeny to estimate tree mutation rate, or 'rejected substitutions'
- Allow different portions of the tree to have different rates: phylogenetics

Evolutionary siqnatures for diverse functions

D. sim GCGAUUUGGAGCUCUCAAGUUUGGGUCACUUAAAG-GGGUGACCCAGACAUGAAAGGCUGCCAAAAUCGC
D.sec GCGAUUUGGAGCUCUCAAGUUUGGGUCACUUAAAG-GGGUGACCCAGACAUGAAGGCUGCCAAAUUGC
D. yak GCGAUUUGGAGCCCUUAAGUUUGGGUCAUUUAAAG-GGGUGACCCAGACAUGAGGGCUGCCAAGUUGC D. n a $G C G A U U U G G A G C C C U C A A G U U U G G G U C A C U U U A A C-G C G U G U C C C A G A C A U G A U G G C U G C C A A A U U G C$
D.pse GCGAUUUGGAGCCCUCAAGUUUGGGUCACUUAAAU-GGGUGACCCAGACAUGAUGGCUACUAGAUC
D. wil GCAAUUUCGAACUAUUAAGUUUGGAUCACUUAAAGCACGUGAUCCAGACAUGAUGGCUACUAGAUUUUU
D. Moj AAcAUUUGG- CCUGUCAAGUCUGCGCCAUUUAAAU-GCGUGGCCCAGACAUGACAAGCUACAAAUGUU
D.vir AGCAUUUGG-UUUGCCAAGUCUGUGGCAUUUGAAU-GUAUGUCGCAGACAUGACAAUC-GCAAAUGCV
. gri AgCAUUUGG-UUUGUUAAGUCUGCGUCAUUUCAAU-GUGUGCCGCAGACAUGACAAAUUCCAAAUGUU
abcdefgh iklm nop qrstuvwxyza

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Stark, Alexander et al. "Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures." Nature 450, no. 7167 (2007): 219-232.

Protein-coding genes

- Codon Substitution Frequencies
- Reading Frame Conservation

RNA structures

- Compensatory changes
- Silent G-U substitutions

microRNAs

- Shape of conservation profile
- Structural features: loops, pairs
- Relationship with 3'UTR motifs

Regulatory motifs

- Mutations preserve consensus
- Increased Branch Length Score
- Genome-wide conservation

Stark et al, Nature 2007 s

Alignment：Evolution preserves functional elements！

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACA CTATGTTGATCTTTTCAGAATTTTT－CACTATATTAAGATGGGTGCAAAGAAGTGTGATTATTATATTACATCGCTTTCCTATCATACACA GTATATTGAATTTTTCAGTTTTTTTTCACTATCTTCAAGGTTATGTAAAAAA－TGTCAAGATAATATTACATTTCGTTACTATCATACACA $\underset{\star}{ } \mathrm{TTPTTTTGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAGAAAGTGTAGTCACATCATGCTATCT-GTCACTATCACATATA}_{\star}{ }_{\star}$ TBP
scer spar
Smik
Sbay

Scer
spar
Smik
Sbay CTGCATIGC－－－－－TATATTGAAGTACGGATTAGAAGCCGCCG俗 ITAGCTGTTCAAG－－－－－－－ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT ICTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT

GAL4
Scer
Spar
may
bay
CTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA
－－－－－TACTAGCTTTTー－ATGGTTATGAA CGTCGGGTTGTGTCCCTTAA－CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA－TACTTGTTTTTTTATGGTTATGAC ACGTTGG－TCGCGTCCCTGAA－CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT－ーACGGTGATGCC GTG－CGGATCACGTCCCTGAT－TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA－TGCCTGTAGTG－－GCAGTTATGGT

M｜G1
GAGGA－AAAATTGGCAGTAA－－－－CCTGGCCCCACAAACCTT－CAAATTAACGAATCAAATTAACAACCATA－GGATGATAATGCGA－－－－－－TTAG－－T AGGAACAAAATAAGCAGCCC－－－－ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA－TGGTAATAGTACAG－－－－－－TTAG－－G Smik CAACGCAAAATAAACAGTCC－－－－CCCGGCCCCACATACCTT－CAAATCGATGCGTAAAACTGGCTAGCATA－GAATTTTGGTAGCAA－AATATTAG－－G Sbay GAACGTGAAATGACAATTCCTTGCCCCT－CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG

MIG1

TBP
TTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG－－ATGATTTTT－GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC－－－－－TI GTTTT－－TC TATTCCTGAGA CAATTCATCCGCAAAAAATAATGGTTTTT－GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC－－－－－TT TTCTCA－－CCTTCTCTGTGATAATTCATCACCGAAATG－－ATGGTTTA－－GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA－－－－－AT TTTTCCGTTTRACTTCTGTAGTGGCTCAT－－GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA $_{\star}^{\star}$ TAACTAATACTTTCAACATTTTCAGT－－TTGTATTACTT－CTTATTCAAAT－－－－GTCATAAAAGTATCAACA－AAAAATTGTTAATATACCTCTATACT TAAATAC－ATTTGCTCCTCCAAGATT－－TTTAATTTCGT－TTTGTTTTATT－－－－GTCATGGAAATATTAACA－ACAAGTAGTTAATATACATCTATACT

We can＇read＇evolution to reveal functional elements

Today's goal:

How do we actually align two genes?

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition

Genomes change over time

begin

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline A & C & G & T & C & A & T & C & A \\
\hline
\end{array} \\
& \text { mutation } \\
& \begin{array}{l|l|l|l|l|l|l|l|l}
\hline A & C & G & T & G & A & \text { T } & \text { C } & \text { A } \\
\hline & & & \\
\hline
\end{array} \\
& \text { A } \times \text { G } \operatorname{T} \text { G } \times \text { T } \mathrm{C} \mid \mathrm{A} \\
& \begin{array}{|l|l|l|l|l|l|l|}
\hline A & G & T & G & T & C & A \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|}
\hline T & A & G & T & G & T & C \\
\hline
\end{array} \\
& \text { insertion } \\
& \begin{array}{|l|l|l|l|l|l|l|}
\hline T & A & G & T & G & T & C \\
\hline
\end{array}
\end{aligned}
$$

end

Goal of alignment: Infer edit operations

begin

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A} & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} & \mathrm{~A} \\
\hline
\end{array}
$$

end

T	A	G	T	G	T	C

From Bio to CS: Formalizing the problem

- Define set of evolutionary operations (insertion, deletion, mutation)
- Symmetric operations allow time reversibility (part of design choice)

(Exception: methylated CpG dinucleotides \rightarrow TpG/CpA non-symmetric)
- Define optimality criterion (min number, min cost)
-Impossible to infer exact series of operations (Occam's razor: find min)

\longrightarrow Many possible transformations
\longrightarrow Minimum cost transformation(s)
- Design algorithm that achieves that optimality (or approximates it)
-Tractability of solution depends on assumptions in the formulation

Note: Not all decisions are conflicting (some are both relevant and tractable) (e.g. Pevzner vs. Sankoff and directionality in chromosomal inversions)

Formulation 1: Longest common substring

- Given two possibly related strings S1 and S2
- What is the longest common substring? (no gaps)

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|l|}
\hline \text { S1 } & \text { A } & \text { G } & \text { T } & \text { C } & \text { A } & \text { T } & \text { C } & \text { A } \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|}
\hline \mathrm{T} & \mathrm{~A} & \mathrm{G} & \mathrm{~T} & \mathrm{G} & \mathrm{~T} & \mathrm{C}
\end{array} \mathrm{~A} \\
& \zeta \text { offset: +1 }
\end{aligned}
$$

Formulation 2: Longest common subsequence

- Given two possibly related strings S1 and S2
- What is the longest common subsequence? (gaps allowed)

Related to:
Edit distance:

- Number of changes needed for S1 \rightarrow S2
- Uniform scoring function

Formulation 3: Sequence alignment

- Allow gaps (fixed penalty)
- Insertion \& deletion operations
- Unit cost for each character inserted or deleted
- Varying penalties for edit operations
- Transitions (Pyrimidine \Leftrightarrow Pyrimidine, Purine \Leftrightarrow Purine)
- Transversions (Purine \Leftrightarrow Pyrimidine changes)
- Polymerase confuses Aw/G and Cw/T more often

Scoring function:
$\operatorname{Match}(\mathrm{x}, \mathrm{x})=+1$
Mismatch $(A, G)=-1 / 2$
Mismatch $(C, T)=-1 / 2$
Mismatch $(\mathrm{x}, \mathrm{y})=-1$

	A	G	T	C
A	+1	$-1 / 2$	-1	-1
G	$-1 / 2$	+1	-1	-1
T	-1	-1	+1	$-1 / 2$
C	-1	-1	$-1 / 2$	+1

purine pyrimid.

Transitions:
$A \Leftrightarrow G, C \Leftrightarrow T$ common (lower penalty)

Transversions:
All other operations

Formulation 4: Varying gap cost models

1. Linear gap penalty

- Same as before

2. Affine gap penalty

- Big initial cost for starting or ending a gap
- Small incremental cost for each additional character

3. General gap penalty

- Any cost function
- No longer computable using the same model

4. Frame-aware gap penalty

- Multiples of 3 disrupt coding regions

5. Seek duplicated regions, rearrangements, ...

- Etc

How many alignments are there?

S1 | A | C | G | | T | C | | | A | | T | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | C | A | | | | | | | | | |

S2 | | | T | A | | G | T | G | T | C | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Longest 'non-boring' alignment: $n+m$ entries
- Otherwise a gap will be aligned to a gap \rightarrow condense
- Alignment is equivalent to gap placement
- ($n+m$ choose n) ways to choose S1 placement
- At each position yes/no answer of placing character
- Exponential number of possible placements
- Exponential number of sequence alignment
- Enumerating and scoring each of them not an option
- Need faster solution for finding best alignment

Need polynomial algorithm to find best alignment amongst an exponential number of possible alignments!

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition

A simple introduction to the principles of Dynamic Programming

Turning exponentials into polynomials

Computing Fibonacci Numbers

- Fibonacci numbers

© source unknown. All rights reserved. This content is excluded from our Creative
21

$$
F 6=F 5+F 4=(F 4+F 3)+(F 3+F 2))=\ldots=(3+2)+(2+1)=5+3=8
$$

Fibonacci numbers are ubiquitous in nature

Romanesque spirals

Nautilus size

Coneflower spirals

Leaf ordering

Computing Fibonacci numbers: Top down

- Fibonacci numbers are defined recursively:
- Python code

```
def fibonacci(n):
    if n==1 or n==2: return 1
    return fibonacci(n-1) + fibonacci(n-2)
```

- Goal: Compute $\mathrm{n}^{\text {th }}$ Fibonacci number.
- $F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)$
- 1,1,2,3,5,8,13,21,34,55,89,144,233,377,...
- Analysis:
$-T(n)=T(n-1)+T(n-2)=(\ldots)=O\left(2^{n}\right)$

Computing Fibonacci numbers: Bottom up

- Bottom up approach
- Python code

fib_table	
$F[1]$	1
$F[2]$	1
$F[3]$	2
$F[4]$	3
$F[5]$	5
$F[6]$	8
$F[7]$	13
$F[8]$	21
$F[9]$	34
$F[10]$	55
$F[11]$	89
$F[12]$	$?$

```
def fibonacci(n):
    fib_table[1] = 1
    fib_table[2] = 1
    for i in range(3,n+1):
        fib_table[i] = fib_table[i-1]+fib_table[i-2]
    return fib_table[n]
```

- Analysis: $T(n)=O(n)$

Lessons from iterative Fibonacci algorithm

fib_table	
$F[1]$	1
$F[2]$	1
$F[3]$	2
$F[4]$	3
$F[5]$	5
$F[6]$	8
$F[7]$	13
$F[8]$	21
$F[9]$	34
$F[10]$	55
$F[11]$	89
$F[12]$	$?$

- What did the iterative solution do?
- Reveal identical sub-problems
- Order computation to enable result reuse
- Systematically filled-in table of results
- Expressed larger problems from their subparts
- Ordering of computations matters
- Naïve top-down approach very slow
- results of smaller problems not available
- repeated work
- Systematic bottom-up approach successful
- Systematically solve each sub-problem
- Fill-in table of sub-problem results in order.
- Look up solutions instead of recomputing

Dynamic Programming in Theory

- Hallmarks of Dynamic Programming
- Optimal substructure: Optimal solution to problem (instance) contains optimal solutions to sub-problems
- Overlapping subproblems: Limited number of distinct subproblems, repeated many many times
- Typically for optimization problems (unlike Fib example)
- Optimal choice made locally: max(subsolution score)
- Score is typically added through the search space
- Traceback common, find optimal path from indiv. choices
- Middle of the road in range of difficulty
- Easier: greedy choice possible at each step
- DynProg: requires a traceback to find that optimal path
- Harder: no opt. substr., e.g. subproblem dependencies

Hallmarks of optimization problems

Greedy algorithms

 Dynamic Programming ${ }_{G}$ 1. Optimal substructureAn optimal solution to a problem (instance) contains optimal solutions to subproblems.

2. Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.
3. Greedy choice property

Locally optimal choices lead to globally optimal solution

Greedy Choice is not possible Globally optimal solution requires trace back through many choices

Dynamic Programming in Practice

- Setting up dynamic programming

1. Find 'matrix' parameterization (\# dimensions, variables)
2. Make sure sub-problem space is finite! (not exponential)

- If not all subproblems are used, better off using memoization
- If reuse not extensive, perhaps DynProg is not right solution!

3. Traversal order: sub-results ready when you need them

- Computation order matters! (bottom-up, but not always obvious)

4. Recursion formula: larger problems $=F$ (subparts)
5. Remember choices: typically $F()$ includes $\min ()$ or $\max ()$

- Need representation for storing pointers, is this polynomial !
- Then start computing

1. Systematically fill in table of results, find optimal score
2. Trace-back from optimal score, find optimal solution

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition
(3) How do we apply dynamic programming to sequence alignment?

Key insight \#1: Score is additive, smaller to larger

$$
\begin{array}{ll|l|l|l|l|l|l|l|}
\mathrm{S} 1 & \mathrm{~A} & \mathrm{C} & \mathrm{G} & \mathrm{~T} & \mathrm{C} & \mathrm{~A} & \mathrm{~T} & \mathrm{C} \\
\hline
\end{array}
$$

\[

\]

- Compute best alignment recursively
- For a given aligned pair (i, j), the best alignment is:
- Best alignment of S1[1..i] and S2[1..j]
- + Best alignment of S1[i..n] and S2[j..m]
- Proof: cut-and-paste argument (see 6.046)

This allows a single recursion (top-left to bottom-right) instead of two recursions (middle-to-outside top-down)

Key insight \#2: compute scores recursively

$\left.$| S2 | T | A | G | T | G | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | C \right\rvert\, A

\rightarrow Compute alignment of CGT vs. TG exactly once

Key insight \#3: sub-problems are repeated \rightarrow reuse!

\rightarrow Identical sub-problems! We can reuse our work!

Solution \#1 - Memoization

- Create a big dictionary, indexed by aligned seqs
- When you encounter a new pair of sequences
- If it is in the dictionary:
- Look up the solution
- If it is not in the dictionary
- Compute the solution
- Insert the solution in the dictionary
- Ensures that there is no duplicated work
- Only need to compute each sub-alignment once!

Top down approach

Solution \#2 - Dynamic programming

- Create a big table, indexed by (i, j)
- Fill it in from the beginning all the way till the end
- You know that you'll need every subpart
- Guaranteed to explore entire search space
- Ensures that there is no duplicated work
- Only need to compute each sub-alignment once!
- Very simple computationally!

Bottom up approach

Key insight \#4: Optimal prefix almt score \Leftrightarrow Matrix entry

	S,[1..i]				i	S, [i. n]				
$\mathrm{S}_{2}[1 . \mathrm{jj}]$										
j				\leftarrow	s					
$\mathrm{s}_{2}[$. m$]$										

Key insight \#5: Optimal alignment \Leftrightarrow Matrix path

\[

\]

Best alignment \Leftrightarrow Best path through the matrix
S1

A	C	G	T	C	A	T	C	A

Goal:

Find best path through the matrix

DP approach: iteratively grow best alignment soltn

S1 | A | C | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Compute all alignment scores from the bottom up
- Define M[i,j] prefix alignment score of $\mathrm{S}_{1}[1 . . \mathrm{i}]$ and $\mathrm{S}_{2}[1 . . \mathrm{j}]$
- Fill up table recursively from smaller to bigger alignments
- Express alignment of $S_{1}[1 . . i+1]$ and $S_{2}[1 . . j+1] \rightarrow M[i+1, j+1]$
- One of three possibilities: (1) extend alignment from M[i,j] (2) extend from M[i-1,j], or (3) extend from M[i,j-1]
- Only a local computation, takes O(1) time!
- Proof of correctness (cut-and-paste argument from 6.006)
- Best alignment of $\mathrm{S}_{1}[1 . . \mathrm{i}+1]$ and $\mathrm{S}_{2}[1 . . \mathrm{j}+1]$ must be composed of best alignments of smaller prefix
- Proof: otherwise could replace sub and get better overall

Computing alignments recursively: $M[i, j]=F(s m a l l e r)$

- Local update rules, only look at neighboring cells:
- Compute next alignment based on previous alignment
- Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]
- Table lookup avoids repeated computation
- Computing the score of a cell from smaller neighbors

$$
\begin{gathered}
M(i-1, j)-\text { gap } \\
-M(i, j)=\max \left\{\begin{array}{c}
M(i-1, j-1)+\text { score }\} \\
M(i, j-1)-\text { gap }
\end{array}\right.
\end{gathered}
$$

- Only three possibilities for extending by one nucleotide: a gap in one species, a gap in the other, a (mis)match
- Compute scores for prefixes of increasing length
- Start with prefixes of length 1, extend by one each time, until all prefixes have been computed
- When you reach bottom right, alignment score of $S_{1}[1 . . \mathrm{m}]$ and $\mathrm{S}_{2}[1 . . \mathrm{n}]$ is alignment of full S_{1} and full S_{2}
- (Can then trace back to construct optimal path to it)

Dynamic Programming for sequence alignment

- Setting up dynamic programming

1. Find 'matrix' parameterization

- Prefix parameterization. Score($\left.\mathrm{S}_{1}[1 . . \mathrm{i}], \mathrm{S}_{2}[1 . . \mathrm{j}]\right) \rightarrow \mathrm{M}(\mathrm{i}, \mathrm{j})$
- (i,j) only prefixes vs. (i,j,k,l) all substrings \rightarrow simpler 2-d matrix

2. Make sure sub-problem space is finite! (not exponential) - It's just n^{2}, quadratic (which is polynomial, not exponential)
3. Traversal order: sub-results ready when you need them

4. Recursion formula: larger problems = Func(subparts)

- Need formula for computing M[i,j] as function of previous results
- Single increment at a time, only look at M[i-1,j], M[i,j-1], M[i-1,j-1] corresponding to 3 options: gap in S_{1}, gap in S_{2}, char in both
- Score in each case depends on gap/match/mismatch penalties

5. Remember choice: $F()$ typically includes $\min ()$ or max()

- Remember which of three cells (top,left,diag) led to maximum

Step 1: Setting up the scoring matrix $M[i, j]$

Step 2: Filling in the optimal scores from top left

Step 3: Trace back pointers to construct alignment

--- - Path segments that lead to locally optimal choices

- Path segments that lead to the globally optimal solution

Genome alignment in an excel spreadsheet

S1:"TAAC-CTTTATCTGCCA" S2:"TAACGGCCCATCT-CGA"

Genome alignment in an excel spreadsheet

K15 $=I N D E X(\$ A A \$ 2: \$ A D \$ 5$, MATCH(K\$8,\$\$\$2:\$2\$5,0), MATCH(\$E15,\$AA\$1:\$AD\$1,0)

Local score of matching characters $\mathrm{S}_{1}[\mathrm{i}]$ and $\mathrm{S}_{2}[\mathrm{j}]$

K34
$=C O N C A T E N A T E\left(I F\left(A D 15=A D 14+\$ A E \$ 2,\left.^{\prime \prime}\right|^{\frac{33}{34}, " \prime \prime}\right)\right.$,
IF(AD15=AC15+\$AE\$2,"--",""),
IF(AD15=AC14+K15,"\",""))|

Is the max alignment score coming from the top ("|"), from the left ("--") or from the diagonal up ("\") (show all of them, cuz we can)

K53
$=$ IF(AD34>0, IF(AND(ISNUMBER(SEARCH("\",L35)),AE35>0), CONCATENATE(K\$8,L54),
IF(AND(ISNUMBER(SEARCH("|",K35)),AD35>0), CONCATENATE("-",K54), IF(AND(ISNUMBER(SEARCH("-",L34)),AE34>0), CONCATENATE(K\$8,L53), "BADABOOM!"))),

Construct the optimal alignment for sequence S_{1} by adding in characters or gaps to increasingly large suffixes (and arbitrarily choose one path when multiple using nested if's)

What is missing? (5) Returning the actual path!

- We know how to compute the best score
- Simply the number at the bottom right entry
- But we need to remember where it came from
- Pointer to the choice we made at each step
- Retrace path through the matrix
- Need to remember all the pointers

Time needed: $O(m * n)$
Space needed: O(m*n)

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition

If time permits...

(4) Extensions to basic DP solution

Bounded Dynamic Programming

Slides credit: Serafim Batzoglou

Can we do better than $O\left(n^{2}\right)$ in the general case?

- Reduced Orthogonal Vectors to PATTERN
- Reduced PATTERN to EDIT DISTANCE
- Proved EDIT DISTANCE is a SETH-hard problem

Linear space alignment

It is easy to compute $F(M, N)$ in linear space

Allocate (column[1])
Allocate (column[2])

For $\quad i=1 \ldots . M$
If $i>1$, then:
Free(column[i - 2])
Allocate(column[i])
For $\mathrm{j}=1 \ldots \mathrm{~N}$
$F(i, j)=\ldots$

What about the pointers?

Finding the best back-pointer for current column

- Now, using 2 columns of space, we can compute for $k=1 \ldots M, F(M / 2, k), F r(M / 2, N-k)$

PLUS the backpointers

Best forward-pointer for current column

- Now, we can find k^{*} maximizing $\mathrm{F}(\mathrm{M} / 2, \mathrm{k})+\mathrm{F}^{\mathrm{r}}(\mathrm{M} / 2, \mathrm{~N}-\mathrm{k})$
- Also, we can trace the path exiting column $\mathrm{M} / 2$ from k^{*}

Recursively find midpoint for left \& right

- Iterate this procedure to the left and right!

Total time cost of linear-space alignment

Total Time: $\quad c M N+c M N / 2+c M N / 4+\ldots . .=2 c M N=O(M N)$

Total Space: $\mathrm{O}(\mathrm{N})$ for computation,
$\mathrm{O}(\mathrm{N}+\mathrm{M})$ to store the optimal alignment

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition

Additional insights

Why the 2-dimentional parameterization worked

Summary

- Dynamic programming
- Reuse of computation
- Order sub-problems. Fill table of sub-problem results
- Read table instead of repeating work (ex: Fibonacci)
- Sequence alignment
- Edit distance and scoring functions
- Dynamic programming matrix
- Matrix traversal path \Leftrightarrow Optimal alignment
- Thursday: Variations on sequence alignment
- Local/global alignment, affine gaps, algo speed-ups
- Semi-numerical alignment, hashing, database lookup
- Recitation:
- Dynamic programming applications
- Probabilistic derivations of alignment scores

Goal: Sequence Alignment / Dynamic Programming

1. Introduction to sequence alignment

- Comparative genomics and molecular evolution
- From Bio to CS: Problem formulation
- Why it's hard: Exponential number of alignments

2. Introduction to principles of dynamic programming

- Computing Fibonacci numbers: Top-down vs. bottom-up
- Repeated sub-problems, ordering compute, table lookup
- DP recipe: (1) Parameterization, (2) sub-problem space, (3) traversal order, (4) recursion formula, (5) trace-back

3. DP for sequence alignment

- Additive score, building up a solution from smaller parts
- Prefix matrix: finite subproblems, exponential paths
- Duality: each entry \Leftrightarrow prefix alignment score; path \Leftrightarrow aligmnt

4. Advanced topics: Dynamic Programming variants

- Linear-time bounded DP(heuristic). Linear-space DP. Gaps
- Importance of parameterization: 2-D vs. 4-D decomposition

MIT OpenCourseWare
http://ocw.mit.edu
6.047 / 6.878 / HST. 507 Computational Biology

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

