
6.047/6.878/HSPH IMI.231/HST.507 Fall 2015 
Problem Set 4: Alleles and Arrays 

Due Thursday, November 12 at 8pm (submit on the course website) 

Submit a zip file of a directory named Lastname Firstname containing: 

•	 A PDF file named Lastname Firstname.pdf with your written answers, which should include all plots you 
are referencing. 

•	 A directory named code with all the code you are submitting 

In your answers to the questions please refer to the appropriate file name where your code for that problem is 

located.  Unless skeleton code has been provided, feel free to use any programming language you are 

comfortable with, as long as you structure and comment your code to make it concise and legible. 

1	 Generalized suffix trees (10pts) 

In this problem, we will study some generalizations of suffix trees which allow searching multiple strings and 
approximate string matching. 

(a) Describe a modification to the suffix tree data structure which will allow queries on multiple strings.	 For 
example, we may want to search for occurrences of a particular query sequence in multiple reference genomes. 

(b) Recall that in the case of a suffix tree on one string, we can construct an equivalent suffix array which will 
require less space to store. Can your generalized suffix tree be transformed into a suffix array? If so, give 
an algorithm to do so. Is it possible to directly use a suffix array to solve this problem? 

(c) Suppose we are instead interested in allowing only certain mismatches in certain positions (e.g., looking 
for motif instances). Describe how to build a suffix tree which can handle these queries. Can this tree be 
transformed into a suffix array? 

(d) Suppose	 we want to search for approximate occurrences of a query string within Hamming distance k 
(number of mismatches at most k). Describe an algorithm to perform this query on a suffix tree. 

Extra credit: Describe an algorithm to perform this query on a suffix array. 

2	 Finding eQTLs (20pts) 

In this problem, we will examine the sources of variation in gene expression that partition a population into sub-
populations. You will find the datasets used in this question in the eQTLs folder available though the problem set 
folder on the course website. 

(a) In the file ExpData.txt, you will find log-normalized RNA-seq expression data from our population of 1000 
samples, with 5000 genes profiled for each sample. Do a principal components analysis on this dataset to 
find the clusters of samples that have similar patters of gene expression. Plot the output of your analysis, 
and describe the patterns that you observe. What is the structure inherent in this population? 

For PCA, we recommend you use the princomp function in the stats package available by default in R. 
However, many other languages such as MATLAB and python have analogous functions; you should use 
whatever you are most comfortable with. In your plots, be sure the axes are labeled with the components you 
are displaying in each plot. Also make sure that at least one of your plots colours the points corresponding 
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to the samples with the sub-population that you think they should belong to. (Hint: You can re-use your 
k-means code from Pset 3 to find these sub-populations!). 

Hand in your write-up and the code you used for plotting and assigning samples to sub-populations. 

(b) In the file SnpData.txt, you will find genotyping data for the same 1000 samples across 500 SNPs. Each 
SNP’s genotype has been called with reference to the same reference genotype; “0” thus represents the 
reference allele, “2” represents the non-reference allele, and “1” represents a different allele on each strand. 

You will find that some of the SNPs (more than 5, less than 100) are eQTLs, that is, they have an effect 
on the expression of one or more of the genes we collected expression data for. Using whatever model you 
see fit, search for these eQTLs using the genotyping data and the expression data. You may not have the 
computational resources to test all combinations of SNPs and genes, so you should think about smart ways 
to choose subsets of each to find some eQTLs - you don’t have to find all of them! 

For three of the eQTLs you found, present the evidence you have for why you think it is an eQTL, and not 
just associated with the expression of a gene by chance alone. Be sure to include plots in your analysis to 
support your hypothesis, and to thoroughly explain the method you used to find eQTLs. You can assume 
that the association between genotype and expression is linear for eQTLs. Don’t forget that you should be 
correcting for the fact that you are performing multiple significance tests. 

Hand in your write-up as well as the code you used to look for eQTLs in the two datasets provided. 

(c) In the above analysis, we were forced to consider all pairs of SNPs and genes to identify eQTLs.	 What 
sources of data that have not been provided as part of this problem would have been useful in constraining 
the amount of such pairs you had to test? For at least two sources, give a description of what the dataset 
would look like (what are the rows and columns of the data matrix? what kinds of values are stored in the 
matrix?) and explain how you would use it to filter out pairs of SNPs and genes that are unlikely to be 
associated with one another. 
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3	 Coalescent simulation (6.878 only, 10pts) 

In this problem, we will simulate the coalescent process. Recall this is the time-reverse of the Wright–Fisher 
process. 

(a) Write	 a program to simulate the coalescent process on a population of N alleles. Track the times of 
coalescent events starting from the initial generation until all alleles coalesce to a single ancestor. If we are 
tracking k lineages, you should report k − 1 coalescent events. 

Recall that the Wright–Fisher process assumes each allele in the next generation is sampled independently 
from all alleles in the current generation. We are now interested in the reverse, so we instead need to sample 
parents in the previous generation uniformly at random with replacement. Note we are interested in the 
identities of the parents and not their ancestral alleles. 

Run 1,000 trials with a population size of N = 500. Report the mean and standard deviation of the number 
of generations between coalescent events of k = 2, 3, and 4 lineages. 

(b) Recall the waiting time between coalescent events is approximately exponentially distributed with parameter 
λ. For each value of k, what is the value of λ given N = 500? 

Given this distribution, the mean waiting time and its standard deviation are both 1/λ. How do these 
expected values compare to your observed values? If your observed values are different, give an explanation 
of what could have caused the differences. 

(c) Extend your simulator to model sexual reproduction. 

Assume a fixed number of females F (and therefore M = N − F males) in each generation and that each 
chromosome in the next generation is selected in the following way: sample a male and female to mate 
uniformly at random, then sample one of the two alleles uniformly at random. Your simulation should do 
the reverse: sample a father and mother and then pick one at random as the ancestor for each allele. 

Run 1,000 trials with F = 100 and M = 400. Do your results agree with the coalescent approximation? 
Justify your answer as in (b). 

Can you extend the coalescent approximation to more accurately reflect this model of sexual reproduction? 
Do your results agree with this new approximation? 
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