
Lecture 24 Cache-Oblivious II Spring 2015

Lecture 24: Cache-oblivious algorithms II

• Search

– binary

– B-ary

– cache-oblivious

• Sorting

– mergesorts

– cache-oblivious

Why LRU block replacement strategy?

LRUM ≤ 2 · OPTM/2 [Sleater and Tarjan 1985]
Proof.

• partition block access sequence into maximal phases of M/B distinct blocks

• LRU spends ≤ M/B memory transfers/phase

• OPT must spend ≥ M /B memory transfers per phase: at best, starts phase
2

with entire M/2 cache with needed items. But there are M/B blocks during
phase. So ≤ half free

Search

Preprocess n elements in comparison model to support predecessor search for x.

B-trees

They support predecessor (and insert and delete) in O(logB+1 N) memory transfers.

• each node occupies Θ(1) blocks

• height= Θ(logB N)

• need to know B

1

6.046J

Lecture 24	 Cache-Oblivious II Spring 2015

x

Binary search

Approximately, every iteration visits a different block until we are in x’s block. Thus,
MT (N) = Θ(log N − log B) = Θ(log(N/B)). SLOW

van Emde Boas layout

[Prokop 1999]

lg N

(1/2)lg N

middle level

\sqrt{N}

•	 store N elements in complete BST

•	 carve BST at middle level of edges

•	 recursively layout the pieces and concatenate

•	 like block matrix multiplication, order of pieces doesn’t matter; just need each
piece to be stored consecutively

Analysis of BST search in vEB layout:

•	 consider recursive level of refinement at which structure has ≤ B nodes
√ •	 the height of the vEB tree is between

2
1 lg B and lg B =⇒ size is between B

and B
=⇒ any root-to-node path (search path) visits ≤ lg N = 2 logB N trees that 1

2 lg B

have size ≤ B

•	 each tree of size ≤ B occupies ≤ 2 memory blocks

=⇒ ≤ 4 logB N = O(logB N) memory transfers

2

6.046J

� �

Lecture 24	 Cache-Oblivious II Spring 2015

•	 this generalizes to heights that are not powers of 2, B-trees of constant branch
ing factor and dynamic B-trees: O(logB N) insert/delete. [Bender, Demaine,
Farach-Colton 2000]

Sorting

B-trees

N inserts into (cache-oblivious) B-tree =⇒ MT (N) = Θ(N logB N) NOT OPTI

MAL. By contrast, BST sort is optimal O(N lg N)

Binary mergesort

•	 binary mergesort is cache-oblivious.

•	 the merge is 3 parallel scans

=⇒ MT (N) = 2MT (N/2) + O(N/B + 1)

MT (M) = O(M/B)

•	 the recursion tree has lg(N/M) levels, and each level contributes O(N/B)
=⇒ MT (N) = N

B lg
M
N . ←

lg
B
B faster than the B-tree version discussed earlier!

M/B-way mergesort

•	 split array into M/B equal subarrays

•	 recursively sort each

•	 merge via M/B parallel scans (keeping one “current” block per list)

M N
=⇒ MT (N) = MT + O(N/B + 1)

B M/B

MT (M) = O(M/B)

N
=⇒ height becomes logM/B + 1

M
N B

= logM/B · + 1
B M
N M

= logM/B − logM/B + 1
B B
N

= logM/B B

3

6.046J

� �

Lecture 24 Cache-Oblivious II Spring 2015

N N
=⇒ MT (N) = O logM/B B B

This is asymptotically optimal, in the comparison model.

Cache-oblivious Sorting

This requires the tall-cache assumption: M = Ω(B1+E) for some fixed f > 0, e.g.,
M = Ω(B2) or M/B = Ω(B).

Then, ≈ N E-way mergesort with recursive (“funnel”) merge works.

Priority Queues

• O(1 N
B logM/B B) per insert or delete-min

• generalizes sorting

• external memory and cache-oblivious

• see 6.851

4

6.046J

()

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

