

Distributed Algorithms

6.046J, Spring, 2015

Nancy Lynch

1

What are Distributed Algorithms?

•	 Algorithms that run on networked

processors, or on multiprocessors that share
memory.

•	 They solve many kinds of problems:
–	 Communication
–	 Data management
–	 Resource management
–	 Synchronization
–	 Reaching consensus
–	 …

•	 They work in difficult settings:
– Concurrent activity at many processing locations
– Uncertainty of timing, order of events, inputs

– Failure and recovery of processors, of channels.

•	 So they can be complicated:
– Hard to design, prove correct, and analyze.

p1

p2

pn

x1

x2

2

Distributed Algorithms

•	 Studied since 1967, starting with Dijkstra

and Lamport.
– Edsger Dijkstra: 1972 Turing award winner

– Leslie Lamport: 2013 Turing award winner

•	 Some sources:
–	 Lynch, Distributed Algorithms
–	 Attiya and Welch, Distributed Computing:

Fundamentals, Simulations, and Advanced
Topics

–	 Morgan Claypool series of monographs on
Distributed Computing Theory

–	 Conferences:
•	 Principles of Distributed Computing (PODC)
•	 Distributed Computing (DISC)

3

This Week
• A quick introduction:
– Two common distributed computing models,
– A few fundamental algorithms, and
– Techniques for analyzing algorithms.

• Synchronous distributed algorithms:
– Leader Election
– Maximal Independent Set
– Breadth-First Spanning Trees
– Shortest Paths Trees

• Asynchronous distributed algorithms:
– Breadth-First Spanning Trees
– Shortest Paths Trees

4

Modeling, Proofs, Analysis

•	 Important for distributed algorithms, because they

are complicated and error-prone.
•	 Infinite-state interacting state machines.
•	 Proofs use invariants, proved by induction.
•	 Abstraction relations.
•	 New complexity measures:
–	 Time complexity: Rounds, or real time.

– Communication complexity:

Messages, or bits.

5

Distributed Networks
•	 Based on an undirected graph G = (V, E).

–	 n = V

–	 r(u), set of neighbors of vertex u.
– deg u = |r u |, number of neighbors of vertex u.

•	 Associate a process with each graph vertex.
–	 An infinite-state automaton.
–	 Sometimes refer to processes, or vertices, as nodes.

•	 Associate two directed communication
channels with each edge.

•	 Note: We won’t consider failures.

6

Synchronous Distributed

Algorithms

7

Synchronous Network Model

•	 Lynch, Distributed Algorithms, Chapter 2.
•	 Processes at nodes of an undirected

graph, communicate using messages.
•	 Each process has output ports, input

ports that connect to communication
channels.
–	 Process at vertex u doesn’t know who its

ports’ channels connect to.

–	 Knows the ports only by local names, such as

1, 2, … , k, where k = deg

•	 Processes need not be distinguishable.
–	 E.g., they needn’t have Unique Identifiers (UIDs).
–	 They just know how many ports they have, and their local names.

u .

8

Execution

•	 An algorithm executes in synchronous rounds.
•	 In each round, each process determines, based on its state, the

messages to send on all its ports.
–	 At most one message per port per round.

•	 Each message gets put into its channel, and delivered to the
process at the other end.

•	 Then each process computes a new state based on its old state
and the arriving messages.

•	 Note on costs:
–	 Generally ignore costs of local computation

(time and space).
–	 Focus on time (number of rounds), and

communication (number of messages or total
number of bits).

9

Leader Election

10

Leader Election

• G = V, E is an arbitrary connected (undirected) graph.
• Goal is for exactly one process to output a special leader signal.

• Motivation: Leader can take charge of:
– Communication
– Coordinating data processing
– Allocating resources
– Scheduling tasks
– Reaching consensus

– …

11

Simple case: Clique Network

•	 All vertices are directly connected to all

others.

•	 Theorem 1: Let G = V, E be an n-
vertex clique. Then there is no algorithm
consisting of deterministic,
indistinguishable processes that is
guaranteed to elect a leader in G.

• Proof:
– For example, consider n = 2.

– Two identical, deterministic processes.
– Show by induction that the processes remain in the same state forever…

12

Proof

•	 By contradiction. Assume an algorithm A that solves the

problem.
•	 Both processes begin in the same start state.
•	 Prove by induction on the number r of completed rounds that

both processes are in identical states after r rounds.
–	 Generate the same message.
–	 Receive the same message.
–	 Make the same state change.

•	 Since the algorithm solves the leader election problem,
eventually one of them gets elected.

•	 Then they both get elected, contradiction.

13

Clique Network

•	 Theorem 1: Let G = V, E be an n-
vertex clique. Then there is no algorithm
consisting of deterministic,
indistinguishable processes that is
guaranteed to elect a leader in G.

• Proof:
– Now consider n > 2.

–	 Processes have n - 1 output ports and n - 1 input ports, each set
numbered 1, 2, … , n - 1.

–	 Assume ports are connected “consistently”: output port k at a process
is connected to input port k at the other end.

–	 Show by induction that all the processes remain in the same state
forever…

14

Proof

•	 Assume an algorithm A that solves the leader election problem.

•	 All processes start in the same start state.
•	 Prove by induction on the number r of completed rounds that

all processes are in identical states after r rounds.
–	 For each k, they generate the same message on port k.

–	 For each k, they receive the same message on port k.

–	 Make the same state changes.
•	 Since the algorithm solves the leader election problem,

eventually some process gets elected.
•	 Then everyone gets elected, contradiction.

•	 A basic problem for distributed algorithms: Breaking symmetry

•	 Deterministic, indistinguishable processes can’t do it.
•	 So we need something more…

15

So we need something more…

• Unique Identifiers (UIDs)
– Assume processes have unique identifiers (UIDs), which they

“know”, e.g., each process starts with its own UID in a special
state variable.

– UIDs are elements of some totally-ordered set, e.g., the
natural numbers.

– Different UIDs can appear anywhere in the graph, but each
can appear only once.

• Randomness

16

�

Algorithm Using UIDs

•	 Theorem 2: Let G = V, E be an n-vertex clique.

Then there is an algorithm consisting of deterministic
processes with UIDs that is guaranteed to elect a
leader in G.

•	 The algorithm takes only 1 round and uses only n
point-to-point messages.

•	 Algorithm:
– Everyone sends its UID on all its output ports, and collects

UIDs received on all its input ports.
–	 The process with the maximum UID elects itself the leader.

17

Algorithm Using Randomness

• Idea: Processes choose IDs randomly, from a sufficiently large set

so that it is likely that all are different. Then use them like UIDs.

•	 Q: What is a “sufficiently large” set?

•	 Lemma 3: Let E be a real, 0 < E < 1. Suppose that n processes
1, … , r , choose ids uniformly at random, independently, from

where r = rn� / 2 El. Then with probability at least 1 - E, all
the chosen numbers are different.

•	 Proof: The probability of any two particular processes choosing
the same number is 1 . Taking a union bound for all n

pairs, the
l	 �probability is still < E.

18

Algorithm Using Randomness

•	 Theorem 4: Let G = V, E be an n-vertex clique. Then

there is an algorithm consisting of randomized,
indistinguishable processes that eventually elects a
leader in G, with probability 1.

1•	 The algorithm takes expected time < .
1-£

•	 Also, with probability > 1 - E, the algorithm finishes in
only one round.

•	 Algorithm:
–	 Processes choose random ids from a sufficiently large space.
–	 Exchange ids; if the maximum is unique, the maximum wins.
–	 Otherwise repeat, as many times as necessary.

19

Maximal Independent Set

20

Maximal Independent Set (MIS)

•	 General undirected graph

network:
• Problem: Select a subset S of

the nodes, so that they form

a Maximal Independent Set.

• Independent: No two neighbors are both in the set.
• Maximal: We can’t add any more nodes without violating

independence.

• Every node is either in S or has a neighbor in S.

21

Distributed MIS
•	 Assume:

–	 No UIDs
–	 Processes know a good upper bound on n.

•	 Require:
–	 Compute an MIS S of the entire network graph.
–	 Each process in S should output in, others output out.

•	 Unsolvable by deterministic algorithms, in some graphs.
•	 So consider randomized algorithms.
•	 Applications of distributed MIS:

–	 Communication networks: Selected processes can take charge of
communication, convey information to their neighbor processes.

–	 Developmental biology: Distinguish cells

in fruit fly’s nervous system to become

“Sensory Organ Precursor” cells [Afek,

Alon, et al., Science].

22

Luby’s MIS Algorithm

• Executes in 2-round phases.
• Initially all nodes are active.
•	 At each phase, some active nodes decide to be in, others decide to be

out, algorithm continues to the next phase with a smaller graph.
• Repeat until all nodes have decided.

• Behavior of active node u at phase ph:
•	 Round 1:

– Choose a random value r in 1,2, … , n5 , send it to all neighbors.
– Receive values from all active neighbors.
– If r is strictly greater than all received values, then join the MIS, output in.

•	 Round 2:
– If you joined the MIS, announce it in messages to all (active) neighbors.
– If you receive such an announcement, decide not to join the MIS, output out.

– If you decided one way or the other at this phase, become inactive.

23

Example

• All nodes start out identical.

24

16

13

2

10

1

11

9

1

87Example

5

• Everyone chooses an ID.

25

16

5
13

2

10

1

11

9

1

87Example

• Processes that chose 16 and 13 are in.
• Processes that chose 11, 5, 2, and 10 are out.

26

44

187

12

• Undecided (gray) processes choose new IDs.

27

44

187

12

• Processes that chose 12 and 18 are in.

• Process that chose 7 is out.

28

122

• Undecided (gray) process chooses a new ID.

29

• It’s in.

122

30

Independence

•	 Theorem 5: If Luby’s algorithm ever
terminates, then the final set S satisfies the
independence property.

•	 Proof:
– Each node joins S only if it has the unique

maximum value in its neighborhood, at some
phase.

–	 When it does, all its neighbors become inactive.

31

Maximality

•	 Theorem 6: If Luby’s algorithm ever
terminates, then the final set S satisfies the
maximality property.

•	 Proof:
– A node becomes inactive only if it joins S or a

neighbor joins S.

–	 We continue until all nodes are inactive.

32

Termination

•	 With probability 1, Luby’s MIS algorithm eventually terminates.

1•	 Theorem 7: With probability at least 1 - , all nodes decide within

n

4 log n phases.
•	 Proof uses a lemma similar to before:

1•	 Lemma 8: With probability at least 1 - , in each phase 1, … ,
n

4 log n , all nodes choose different random values.
•	 So we can essentially pretend that, in each phase, all the random

numbers chosen are different.
•	 Key idea: Show the graph gets sufficiently “smaller” in each phase.

•	 Lemma 9: For each phase ph, the expected number of edges that

are live (connect two active nodes) at the end of the phase is at
most half the number that were live at the beginning of the phase.

33

2

Termination

•	 Lemma 9: For each phase ph, the expected number of edges that

are live (connect two active nodes) after the phase is at most half
the number that were live before the phase.

• Proof:
–	 If node u has some neighbor w whose chosen value is greater than all of

w‘s neighbors and all of u’s other neighbors, then u must decide out in
phase ph.

1 – Probability that w chooses such a value is at least .
deg u +deg w

– Then the probability node u is “killed” by some neighbor in this way is at

1

.least LwEr(u) deg u +deg w

– Now consider an edge u, v .
u

w

34

�

�

�

�

Termination, cont’d

• Proof:

1 – Probability u killed > LwEr(u) .
deg u +deg w

– Probability that edge u, v “dies”
1

> (probability u killed + probability v killed).

– So the expected number of edges that die
1

> L u,v (probability u killed + probability v killed).

– The sum includes the “kill probability” for each node u exactly deg (u) times.
– So rewrite the sum as:

1 L deg u (probability u killed).u

– Plug in the probability lower bound:
1 1

> L u deg u LwEr(u) .
deg u +deg w

1 deg u

.= L u LwEr(u) � deg u +deg w

35

Termination, cont’d

u, v .

•	 Proof:
1	 deg u – Expected number of edges that die > L

u LwEr(u)	 .
�	 deg u +deg w

– Write this expression equivalently as a sum over directed edges (u, v):

1	 deg u

.L(u,v) � deg u +deg v

–	 Here each undirected edge is counted twice, once for each direction, so this
is the same as the following sum over undirected edges

1 deg u +deg (v)
.L

{u,v} � deg u +deg v

–	 This is half the total number of undirected edges, as needed!

•	 Lemma 9: For each phase ph, the expected number of edges that
are live (connect two active nodes) at the end of the phase is at
most half the number that were live at the beginning of the phase.

36

Termination, cont’d

•	 Lemma 9: For each phase ph, the expected number of edges that

are live (connect two active nodes) at the end of the phase is at
most half the number that were live before the phase.

1•	 Theorem 7: With probability at least 1 - , all nodes decide
n

within 4 log n phases.
•	 Proof sketch:

–	 Lemma 9 implies that the expected number of edges still live after
1

÷ 24 log n 4 log n phases is at most n	
= .

� �n

1 – Then the probability that any edges remain live is < (by Markov).

�n

– The probability that the algorithm doesn’t terminate within 4 log n phases
1 1 1

< + < .
�n n n

37

2

2

2

2 2

Breadth-First Spanning Trees

38

Breadth-First Spanning Trees

•	 New problem, new setting.
•	 Assume graph G = (V, E) is connected.
•	 V includes a distinguished vertex vo, which will be the

origin (root) of the BFS tree.
•	 Generally, processes have no knowledge about the graph.

•	 Processes have UIDs.

–	 Each process knows its own UID.
–	 io is the UID of the root v .o

–	 Process with UID io knows it is located at the root.
•	 We may assume (WLOG) that processes know the UIDs of

their neighbors, and know which input and output ports
are connected to each neighbor.

•	 Algorithms will be deterministic (or nondeterministic), but
not randomized.

39

Breadth-First Spanning Trees

•	 Processes must produce a Breadth-First Spanning Tree

rooted at vertex vo.

•	 Branches are directed paths from vo.
–	 Spanning: Branches reach all vertices.
–	 Breadth-first: Vertex at distance d from v appears at
 o

depth exactly d in the tree.
• Output: Each process i = i should output parent j ,
o

meaning that j’s vertex is the parent of i’s vertex in the
BFS tree.

40

Example

41

Simple BFS Algorithm

� Processes mark themselves as they get incorporated into the tree.

� Initially, only i

0
 is marked.

� Algorithm for process i:
� Round 1:

� If i = i
0
 then process i sends a search message to its neighbors.

� If process i receives a message, then it:
� Marks itself.
� Selects i

0
as its parent, outputs parent i

� Plans to send at the next round.
� Round r > 1:

� If process i planned to send, then it sends a search message to its
neighbors.

� If process i is not marked and receives a message, then it:
� Marks itself.
� Selects one sending neighbor, j, as its parent, outputs parent j .

� Plans to send at the next round.

o .

42

Nondeterminism

•	 The algorithm is slightly nondeterministic, in that a

process can choose arbitrarily among several possible
parents.

•	 We could make this deterministic, by using a default, like
“always choose the sender with the smallest UID”.

•	 But it’s also OK to leave it nondeterministic.

• For distributed algorithms, nondeterminism is regarded

differently from the way it is for sequential algorithms.

•	 A distributed algorithm should work correctly for all ways
of resolving the nondeterministic choices.

43

Simple BFS Algorithm

•	 Q: Why does this algorithm yield a BFS tree?
•	 Because all branches are created synchronously,

growing one hop at each round.

•	 Q: Why does it eventually span all the nodes?
•	 Because the graph is connected, and any marked

node sends messages to its neighbors.

44

Example: Simple BFS

45

Round 1

s

46

Round 1

47

Round 2

s

s
s s

48

Round 2

49

Round 3

s

s
ss

s

s
s

s

s
s

s

s s

50

Round 3

51

Round 4

s

s

s
s

ss

52

Round 4

53

Correctness

� Q: Key invariants describing the state after r rounds?

� State variables, per process:

� marked, a Boolean, initially true for io, false for others
� parent, a UID or undefined
� send, a Boolean, initially true for io, false for others
� uid

� Invariants:
– At the end of r rounds, exactly the processes at distance < r

from v are marked. o

– A process = i has its parent defined iff it is marked. o

– For any process at distance d from vo, if its parent is defined,
then it is the UID of a process at distance d - 1 from v .o

• Could use these in a formal correctness proof.
54

Complexity

� Time complexity:

� Number of rounds until all nodes outputs their parent
information.

� Maximum distance of any node from vo, which is < diam

� Message complexity:
� Number of messages sent by all processes during the entire

execution.
� O(E)

55

Bells and Whistles

• Child pointers:

– So far, each process learns its parent, but not its children.
– To add child pointers, everyone who receives a search

message sends back a parent or nonparent response, at
the next round.

• Distances:
– Augment the algorithm so everyone also learns and

outputs its distance from v .o

– Each process records its distance from v in a new dist
o
variable, initially 0 for process io, and e for everyone else.

– Include the dist value in every search message; when an
unmarked process receives a search d message, it sets
its own dist to d + 1.

56

Termination

•	 Q: How can processes learn when the BFS tree is completed?
•	 If they knew an upper bound on diam, then they could simply

wait until that number of rounds have passed.
•	 Q: What if they don’t know anything about the graph?

•	 Slightly simpler problem: Process i should learn when the tree
o
is done.

•	 Termination algorithm:
–	 Assume each search message receives a response, parent or

nonparent.

–	 After a node has received responses to all its outgoing search messages,
it knows who its children are, and knows they are all marked.

–	 The leaves of the tree learn who they are (they receive only nonparent
responses).

–	 Now use a convergecast strategy:

57

Termination

• Termination algorithm:
– After a node has received responses to all its

search messages, it knows who its children are, and knows
they are marked.

–	 The leaves of the tree learn who they are.
–	 Use a convergecast strategy:

•	 Starting from the leaves, the processes fan in done messages up the
BFS tree, toward i0.

•	 A process = i can send a done message to its parent after:
o

– It has received responses to all its search messages (so it
knows who its children are), and

–	 It has received done messages from all its children.

•	 i knows that the BFS tree is completed, when: o

– It has received responses to all its search messages (so it
knows who its children are), and

–	 It has received done messages from all its children.

58

 Termination Using Convergecast

done

done

done done

done

59

 Termination Using Convergecast

done

done

done done

done

done

done

60

 Termination Using Convergecast

done

done

done done

done

done

done

done

61

 Termination Using Convergecast

done

done

done done

done

done

done

done

done

62

 Termination Using Convergecast

done

Done!

done

done done

done

done

done

done

done

63

Complexity for Termination

• After the tree is done, it takes < diam rounds and

n messages for the done information to reach io.

•	 Q: How can all the processes learn that the BFS tree
is completed?

•	 Process i can broadcast a message to everyone o

along the edges of the tree.
•	 Takes an additional diam rounds and n messages.

64

Applications of Breadth-First

Spanning Trees

� Message broadcast:
- Process i can use a BFS tree with child pointers to broadcast a o

sequence of messages to all processes in the network.
- Each takes diam rounds and n messages.
- Could pipeline them, so k messages take only diam + k rounds,

not diam × k.

� Global computation:
- Suppose every process starts with some initial value, and

process i should determine the value of some function of the o
set of all processes’ values.
- min, max, sum, average,…

- Can use convergecast on a BFS tree.
- Cost is diam rounds and n messages.
- In general, messages may be large, but for many functions, some

data aggregation is possible along the way.

65

Application of the BFS construction

� Leader election in a general graph:
� o.No distinguished process i
� Processes don’t know anything about the graph.
� Everyone can starts its own BFS, acting as the root.
� Use this to determine the maximum UID; process with the

max UID is the leader.
� Cost is O diam rounds, O n E messages.

66

Shortest Paths Trees

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

67

Shortest Paths

•	 Generalize the BFS problem to allow weights on the graph

edges, weight u,v for edge {u, v}

• Connected graph G = V, E , root vertex v , process io	 o.

• Processes have UIDs.

• Processes know their
neighbors and the
weights of their incident
edges, but otherwise
have no knowledge
about the graph.

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

68

Shortest Paths

•	 Processes must produce a Shortest-Paths Spanning Tree

rooted at vertex vo.

•	 Branches are directed paths from vo.
–	 Spanning: Branches reach all vertices.
–	 Shortest paths: The total weight of the tree branch to each

node is the minimum total weight for any path from v in G.o

• Output: Each process i = io should output

parent j , distance(d) , meaning that:

–	 j’s vertex is the parent of i’s vertex on a shortest path from v ,o

–	 d is the total weight of a shortest path from v to j.o

69

Bellman-Ford Shortest Paths Algorithm

� State variables:

� dist, a nonnegative real or e, representing the shortest known
distance from v . Initially 0 for process i , e for the others. o o

� parent, a UID or undefined, initially undefined.
� uid

� Algorithm for process i:
� At each round:

� Send a distance(dist) message to all neighbors.

� Receive messages from neighbors; let dj be the distance

received from neighbor j.
� Perform a relaxation step:

dist : min (dist, min(dj + weight i,j) .
j

� If dist decreases then set parent : j, where j is any
neighbor that produced the new dist.

70

 Example: Bellman-Ford

• Initially: 1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

0

71

 Bellman-Ford

• After 1 round:

16

1

1

1

1

1

1

1

1

1

16
12

14 3

4

5

6

0

6

1

72

1

12
6

Bellman-Ford

1• After 2 rounds:

15

1 2

7

13

1

1

1

1

1

1

16
14 3

4

5

0

14

1
1

121

1
6

12

73

3

1

3

5

Bellman-Ford

• After 3 rounds:

14

5

1 2

12

14
1

1

1

1

1

1

1

16
12

14

4

6

0

4

1

1
1

5

1

3

1

3

74

1

1
5

Bellman-Ford

• After 4 rounds:

13

4

1 2

3

8

13
6

1

1

1
1

1

1

16
12

14 3

4

6

0

3

1

1
1

5

1

1

1

75

1

1
5

Bellman-Ford

• After 5 rounds:

9

4

1 2

3

8

9
5

1

1

1
1

1

1

16
12

14 3

4

6

0

1

1
1

5

1

1

1

76

1

1
5

Bellman-Ford

• After 6 rounds:

9

4

1 2

3

8

6
5

1

1

1
1

1

1

16
12

14 3

4

6

0

1

1
1

5

1

1

1

77

1

1

Bellman-Ford

• After 7 rounds:

9

4

1 2

3

7

6
5

1

1

1
1

1

1

16
12

14 3

4

5

6

0

1

1
1

1

1

1

1

78

1

1

Bellman-Ford

• After 8 rounds:

8

4

1 2

3

7

6
5

1

1

1
1

1

1

16
12

14 3

4

5

6

0

1

1
1

1

1

1

1

79

Correctness

� Claim: Eventually, every process i has:

� dist = minimum weight of a path from i to i, ando

� if i = io, parent = the previous node on some shortest path
from i to i.o

� Key invariant:
– For every r, at the end of r rounds, every process i = i has itso

dist and parent corresponding to a shortest path from i to io

among those paths that consist of at most r edges; if there is
no such path, then dist = e and parent is undefined.

80

Complexity

� Time complexity:

� Number of rounds until all the variables stabilize to their final
values.

� n - 1 rounds
� Message complexity:

� Number of messages sent by all processes during the entire
execution.

� O(n · E)

� More expensive than BFS:
� diam rounds,
� O E messages

� Q: Does the time bound really depend on n?

81

Child Pointers

•	 Ignore repeated messages.
•	 When process i receives a message that it does not use

to improve dist, it responds with a nonparent message.
•	 When process i receives a message that it uses to

improve dist, it responds with a parent message, and
also responds to any previous parent with a nonparent
message.

•	 Process i records nodes from which it receives parent
messages in a set children.

•	 When process i receives a nonparent message from a
current child, it removes the sender from its children.

•	 When process i improves dist, it empties children.

82

Termination

•	 Q: How can the processes learn when the shortest-

paths tree is completed?
•	 Q: How can a process know when it can output its

own parent and distance?

•	 If processes knew an upper bound on n, then they
could simply wait until that number of rounds have
passed.

•	 But what if they don’t know anything about the
graph?

•	 Recall termination for BFS: Used convergecast.
•	 Q: Does that work here?

83

Termination

•	 Q: How can the processes learn when the shortest-

paths tree is completed?
•	 Q: Does convergecast work here?
•	 Yes, but it’s trickier, since the tree structure changes.

•	 Key ideas:
– A process = i can send a done message to its current
o

parent after:
•	 It has received responses to all its distance messages, so it

believes it knows who its children are, and
•	 It has received done messages from all of those children.

– The same process may be involved several times in the
convergecast, based on improved estimates.

84

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

