
Lecture 18 Fixed-Parameter Algorithms Spring 2015

Lecture 18: Fixed-Parameter Algorithms

• Vertex Cover

• Fixed-Parameter Tractability

• Kernelization

• Connection to Approximation

Fixed Parameter Algorithms

Fixed Parameter Algorithms are an alternative way to deal with NP-hard problems
instead of approximation algorithms. There are three general desired features of an
algorithm:

1. Solve (NP-)hard problems

2. Run in polynomial time (fast)

3. Get exact solutions

In general, unless P = NP, an algorithm can have two of these three features, but not
all three. An algorithm that has Features 2 and 3 is an algorithm in P (poly-time
exact). An approximation algorithm has Features 1 and 2. It solves hard problems,
and it runs fast, but it does not give exact solutions. Fixed-parameter algorithms will
have Features 1 and 3. They will solve hard problems and give exact solutions, but
they will not run very fast.

Idea: The idea is to aim for an exact algorithm but isolate exponential terms to a
specific parameter. When the value of this parameter is small, the algorithm gets fast
instances. Hopefully, this parameter will be small in practice.

Parameter: A parameter is a nonnegative integer k(x) where x is the problem
input. Typically, the parameter is a natural property of the problem (some k in
input). It may not necessarily be efficiently computable (e.g., OPT).

Parameterized Problem: A parameterized problem is simply the problem plus
the parameter or the problem as seen with respect to the parameter. There are
potentially many interesting parameterizations for any given problem.

1

6.046J

Lecture 18 Fixed-Parameter Algorithms Spring 2015

Goal: The goal of fixed-parameter algorithms is to have an algorithm that is poly
nomial in the problem size n but possibly exponential in the parameter k, and still
get an exact solution.

k-Vertex Cover

Given a graph G = (V, E) and a nonnegative integer k, is there a set S ⊆ V of
vertices of size at most k, |S| ≤ k, that covers all edges. This is a decision problem
for Vertex Cover and is also NP-hard. We will use k as the parameter to develop a
fixed-parameter algorithm for k-Vertex Cover. Note that we can have k << |V | as
the figure below shows:

Brute-force solution (bad)
() () () ()
v v v vTry all + + · · ·+ sets of ≤ k vertices. Can skip all terms smaller than
k k−1 0 k

because bigger sets have more coverage. Testing coverage takes O(m) time where m
is the number of edges. Therefore, the total runtime is O(V k|E|). It is polynomial for
fixed k but not the same polynomial for all k’s. It is inefficient in most cases. Hence
we define nf(k) to be bad, where n = |V |+ |E| is the input size.

Bounded search-tree algorithm (good)

This is a general technique used to improve brute force searches. It works as follows:

• pick arbitrary edge e = (u, v)

• we know that either u ∈ S or v ∈ S (or both) but don’t know which

• guess which one: try both possibilities

1. add u to S, delete u and incident edges from G, and recurse with k' = k−1.

2. do the same but with v instead of u

3. return the OR of the two outcomes

2

6.046J

Lecture 18 Fixed-Parameter Algorithms Spring 2015

This is like guessing in dynamic programming but memoization doesn’t help here.
The recursion tree looks like the following:

u,v

u',v' u'',v''

u v

u' v' u'' v''

At a leaf (k = 0), return YES if | E| = 0 (all edges covered). It takes O(V) time
to delete u or v. Therefore this has a total runtime of (2k| V |).

• O(V) for fixed k

• degree of polynomial is independent of k

• also polynomial for k = O(lg | V |)
• practical for e.g. k ≤ 32

• Hence we define f(k) · nO(1) to be good

Fixed Parameter Tractability

A parameterized problem is fixed-parameter tractable (FPT) if there is an algorithm
with running time ≤ f(k) · nO(1), such that f : N → N (non negative) and k is the
parameter, and the O(1) degree of the polynomial is independent of k and n.

O(1)?Question: Why f(k) · nO(1) and not f(k) + n

tc cTheorem: ∃ f(k) · n algorithm ⇐⇒ ∃ f ' (k) + n

Proof:
(⇐)

tcTrivial (assuming f ' (k) and n are ≥ 1)
(⇒)

c ≤ f(k)c+1if n ≤ f(k), then f(k) · n

3

6.046J

Lecture 18	 Fixed-Parameter Algorithms Spring 2015

c c+1if f(k) ≤ n then f(k) · n ≤ n

c c+1) ≤ f(k)c+1 + nc+1 c
Therefore f(k) · n ≤ max(f(k)c+1, n 	 = f ' (k) + n

t D

Alternatively, since xy ≤ x2 + y2, can just make f ' (k) = (f(k))2 and c ' = 2c.
Example: O(2k · n) ≤ O(4k + n2)

Kernelization

Kernelization is a simplifying self-reduction. It is a polynomial time algorithm that
converts an input (x, k) into a small and equivalent input (x ' , k '). Here, small means
| x ' | ≤ f(k) and equivalent means the answer to x is the same as the answer to x ' .

Theorem: a problem is FPT ⇐⇒ ∃ a kernelization

Proof:
(⇐)

Kernelize ⇒ n ' ≤ f(k)
Run any finite g(n ') algorithm
Totals to nO(1) + g(f(k)) time

(⇒)
let A be an f(k) · nc algorithm, then assuming k is known:
if n ≤ f(k), it’s already kernelized.
if f(k) ≤ n, then

c c+11.	 run A → f(k) · n ≤ n time

2. output O(1)-sized YES/NO instance as appropriate (to kernelize)

if k is unknown: run A for nc+1 time and if it is still not done, we know it is already
kernelized.

So we know (exponential) kernel exists. Recent work aims to find polynomial (even
linear) kernels when possible.

Polynomial kernel for k-Vertex Cover

To create a kernel for k-Vertex Cover, the algorithm follows the following steps:

•	 Make graph simple by removing all self loops and multi-edges

•	 Any vertex of degree > k must be in the cover (else would need to add > k
vertices to cover incident edges)

4

6.046J

Lecture 18	 Fixed-Parameter Algorithms Spring 2015

•	 Remove such vertices (and incident edges) one at a time, decreasing k accord
ingly

•	 Remaining graph has maximum degree ≤ k

•	 Each remaining vertex covers ≤ k edges

•	 If the number of remaining edges is > k, answer NO and output canonical NO
instance.

•	 Else, |E ' | ≤ k2

•	 Remove all isolated vertices (degree 0 vertices)

•	 Now |V ' | ≤ 2k2

•	 The input has been reduced to instance (V ' , E ') of size O(k2)

The runtime of the kernelization algorithm is naively O(V E). (O(V + E) with more
work.) After this, we can apply either a brute-force algorithm on the kernel, which
yields an overall runtime O(V + E + (2k2)kk2) = O(V + E + 2kk2k+2). Or we can
apply a bounded search-tree solution, which yields a runtime of O(V + E + 2kk2).

The best algorithm to date: O(kV + 1.274k) by [Chen, Kanj, Xia - TCS 2010].

Connection to Approximation Algorithms

Take an optimization problem, integral OPT and consider its associated decision

problem: “OPT ≤ k ?” and parameterize by k.

Theorem: optimization problem has EPTAS

(EPTAS: efficient PTAS, f(

ε
1) · nO(1) e.g. ApproxP artition[L17])

⇒ decision problem is FPT

Proof: (like FPTAS, pseudopolynomial algorithm)

•	 Say maximization problem (and ≤ k decision)

•	 run EPTAS with t =
2
1
k in f(2k) · nO(1) time.

• relative error ≤
2
1
k <

k
1

• ⇒ absolute error < 1 if OPT ≤ k

5

6.046J

1

Lecture 18 Fixed-Parameter Algorithms Spring 2015

• So if we find a solution with value ≤ k, then OPT ≤ (1 +

k
1
) · k ≤ k +

2
2

Integral ⇒ OPT ≤ k ⇒ YES

• else OPT > k

D

Also: =, ≤, ≥ decision problems are equivalent with respect to FPT.

(Can use this relation to prove that EPTASs don’t exists in some cases)

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

