

 
 
 
 
 

Design and Analysis of

Algorithms

6.046J/18.401J

LECTURE 14
Network Flow &

Applications

• Review
• Max-flow min-cut theorem

• Edmonds Karp algorithm
• Flow Integrality
• Part II: Applications

 

 

 

 
 

 
 

Recall from Lecture 13

• Flow value: | f | = f (s, V).
• Cut: Any partition (S, T) of V such that s ∈ S

and t ∈ T.
• Lemma. | f | = f (S, T) for any cut (S, T).
• Corollary. | f | ≤ c(S, T) for any cut (S, T).
• Residual graph: The graph Gf = (V, Ef) with

strictly positive residual capacities cf (u, v) =
c(u, v) – f (u, v) > 0.

• Augmenting path: Any path from s to t in Gf .

• Residual capacity of an augmenting path:

c f (p) = min {c f (u,v)}.
(u,v)∈p

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.2

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.3

 
 
 

Max-flow, min-cut theorem

Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof.
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T), the
assumption that | f | = c(S, T) implies that f is a
maximum flow.
(2) ⇒ (3): If there were an augmenting path, the
flow value could be increased, contradicting the
maximality of f.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.4

Proof (continued)

(3) ⇒ (1): Suppose that f admits no augmenting paths.
Define S = {v ∈ V : there exists a path in Gf from s to v},
and let T = V – S. Observe that s ∈ S and t ∈ T, and thus
(S, T) is a cut. Consider any vertices u ∈ S and v ∈ T.

path in Gf

s u v
S T

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S,
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v)
= c(u, v) – f (u, v). Summing over all u ∈ S and v ∈ T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem
follows.
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.5

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

109 109

109

1

109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.6

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

0:109 0:109

0:109

0:1

0:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.7

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

0:109 0:109

0:109

0:1

0:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.8

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

1:109 0:109

1:109

1:1

0:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.9

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

1:109 0:109

1:109

1:1

0:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.10

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

1:109 1:109

1:109

0:1

1:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.11

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

1:109 1:109

1:109

0:1

1:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.12

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

2:109 1:109

2:109

1:1

1:109

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.13

Ford-Fulkerson max-flow
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:

G: s t

2:109 1:109

2:109

1:1

1:109

2 billion iterations on a graph with 4 vertices!
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.14

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people�s
implementations of Ford-Fulkerson augment along
a breadth-first augmenting path: a shortest path in
Gf from s to t where each edge has weight 1. These
implementations would always run relatively fast.
Since a breadth-first augmenting path can be found
in O(E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses
on bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-
time bounds.)

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.15

 

 

 

 

 

 

Best to date

• The Edmonds-Karp maximum-flow algorithm

runs in O(V E2) time.
• Breadth-first search takes O(E) time
• O(V E) augmentations in worst case

• The asymptotically fastest algorithm through
2011 for maximum flow, due to King, Rao, and
Tarjan, runs in O(V E logE/(V lg V)V) time.

• Recently Orlin came up with an O(V E) time
algorithm!

• One variant uses fast matrix multiplication
© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.16

 

Flow Integrality

• Claim: Suppose the flow network has integer

capacities. Then, the maximum flow will be
integer-valued.

Proof: Start with a flow of 0 on all edges. Use
Ford-Fulkerson. Initially, and at each step,
Ford-Fulkerson will find an augmenting path
with residual capacity that is an integer.
Therefore, all flow values on edges always
remain integral throughout the algorithm.

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.17

 

 

 

 

Applications

• Baseball Elimination

• Bipartite Matching

• Flow integrality important to reducing these
problems to max flow!

• See additional notes for L14 for Baseball
Elimination

© 2001–15 by Leiserson et al Design and Analysis of Algorithms L14.18

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

