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LECTURE 14 
Network Flow & 


Applications 

• Review 
• Max-flow min-cut theorem 

• Edmonds Karp algorithm 
• Flow Integrality 
• Part II: Applications 



    

      
  

    

    
 

 

 
 

Recall from Lecture 13 

• Flow value: | f | = f (s, V). 
• Cut: Any partition (S, T) of V such that s ∈ S 

and t ∈ T. 
• Lemma. | f | = f (S, T) for any cut (S, T). 
• Corollary. | f | ≤ c(S, T) for any cut (S, T). 
• Residual graph: The graph Gf = ( V, Ef ) with 

strictly positive residual capacities cf (u, v) = 
c(u, v) – f (u, v) > 0. 

• Augmenting path: Any path from s to t in Gf . 

• Residual capacity of an augmenting path: 

c f ( p) = min {c f (u,v)}. 
(u,v)∈p
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p) 
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Max-flow, min-cut theorem 

Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T). 
2. f is a maximum flow. 
3. f admits no augmenting paths. 
Proof.  
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T), the 
assumption that | f | = c(S, T) implies that f is a 
maximum flow. 
(2) ⇒ (3): If there were an augmenting path, the 
flow value could be increased, contradicting the 
maximality of f. 
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Proof (continued) 

(3) ⇒ (1): Suppose that f  admits no augmenting paths. 
Define S = {v ∈ V : there exists a path in Gf from s to v}, 
and let T = V – S. Observe that s ∈ S and t ∈ T, and thus 
(S, T) is a cut. Consider any vertices u ∈ S and v ∈ T. 

path in Gf 

s u v 
S T 

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S, 
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v) 
= c(u, v) – f (u, v). Summing over all u ∈ S and v ∈ T 
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem 
follows. 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

109 109 

109 

1 

109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

0:109 0:109 

0:109 

0:1 

0:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

0:109 0:109 

0:109 

0:1 

0:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

1:109 0:109 

1:109 

1:1 

0:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

1:109 0:109 

1:109 

1:1 

0:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

1:109 1:109 

1:109 

0:1 

1:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

1:109 1:109 

1:109 

0:1 

1:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

2:109 1:109 

2:109 

1:1 

1:109 
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Ford-Fulkerson max-flow 
algorithm 

Algorithm:
f [u, v] ← 0 for all u, v ∈ V 
while an augmenting path p in G wrt f  exists 

do augment f  by cf (p)
Can be slow: 

G: s t 

2:109 1:109 

2:109 

1:1 

1:109 

2 billion iterations on a graph with 4 vertices! 
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Edmonds-Karp algorithm 

Edmonds and Karp noticed that many people�s 
implementations of Ford-Fulkerson augment along 
a breadth-first augmenting path: a shortest path in
Gf  from s to t where each edge has weight 1. These 
implementations would always run relatively fast. 
Since a breadth-first augmenting path can be found 
in O(E) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses 
on bounding the number of flow augmentations. 
(In independent work, Dinic also gave polynomial-
time bounds.) 
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Best to date 

• The Edmonds-Karp maximum-flow algorithm

runs in O(V E2) time. 
• Breadth-first search takes O(E) time 
• O(V E) augmentations in worst case 

• The asymptotically fastest algorithm through 
2011 for maximum flow, due to King, Rao, and 
Tarjan, runs in O(V E logE/(V lg V)V) time. 

• Recently Orlin came up with an O(V E) time 
algorithm! 

• One variant uses fast matrix multiplication 
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Flow Integrality 

• Claim: Suppose the flow network has integer

capacities. Then, the maximum flow will be 
integer-valued. 

Proof: Start with a flow of 0 on all edges. Use
Ford-Fulkerson. Initially, and at each step, 
Ford-Fulkerson will find an augmenting path
with residual capacity that is an integer. 
Therefore, all flow values on edges always 
remain integral throughout the algorithm. 
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Applications 


• Baseball Elimination 

• Bipartite Matching 

• Flow integrality important to reducing these 
problems to max flow! 

• See additional notes for L14 for Baseball 
Elimination 
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