
Lecture 10 Introduction Spring 2015

Lecture 10: Dynamic Programming

• Longest palindromic sequence

• Optimal binary search tree

• Alternating coin game

DP notions
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution based on optimal solutions
of subproblems

3. Compute the value of an optimal solution in bottom-up fashion (recursion &
memoization)

4. Construct an optimal solution from the computed information

Longest Palindromic Sequence
Definition: A palindrome is a string that is unchanged when reversed.

Examples: radar, civic, t, bb, redder
Given: A string X[1 · · ·n], n ≥ 1
To find: Longest palindrome that is a subsequence
Example: Given “c h a r a c t e r”
output “c a r a c”
Answer will be ≥ 1 in length

Strategy

L(i, j): length of longest palindromic subsequence of X[i · · · j] for i ≤ j.

1

6.046J

Lecture 10 Introduction Spring 2015

1 def L(i, j) :
2 if i == j: return 1
3 if X[i] == X[j]:
4 if i + 1 == j: return 2
5 else : return 2 + L(i + 1, j - 1)
6 else :
7 return max(L(i + 1, j), L(i, j - 1))

Exercise: compute the actual solution

Analysis

As written, program can run in exponential time: suppose all symbols X[i] are dis
tinct.

T (n) = running time on input of length n
1 n = 1

T (n) =
2T (n − 1) n > 1

= 2n−1

Subproblems
n

But there are only = θ(n2) distinct subproblems: each is an (i, j) pair with
2

i < j. By solving each subproblem only once. running time reduces to

θ(n 2) · θ(1) = θ(n 2)

where θ(n2) is the number of subproblems and θ(1) is the time to solve each
subproblem, given that smaller ones are solved.

Memoize L(i, j), hash inputs to get output value, and lookup hash table to see if
the subproblem is already solved, else recurse.

Memoizing Vs. Iterating

1. Memoizing uses a dictionary for L(i, j) where value of L is looked up by using
i, j as a key. Could just use a 2-D array here where null entries signify that the
problem has not yet been solved.

2. Can solve subproblems in order of increasing j − i so smaller ones are solved
first.

2

6.046J

Lecture 10 Introduction Spring 2015

Optimal Binary Search Trees: CLRS 15.5
Given: keys K1, K2, · · · , Kn, K1 < K2 < · · · < Kn, WLOG Ki = i

weights W1,W2, · · · ,Wn

Find: BST T that minimizes:

n L
Wi · (depthT (Ki) + 1)

i=1

Example: Wi = pi = probability of searching for Ki

Then, we are minimizing expected search cost.
(say we are representing an English → French dictionary and common words

should have greater weight)

Enumeration

Exponentially many trees

n = 2�

1�

2� 1�

2�

W1 + 2W2 2W1 + W2

n = 3�

1�

2�

2�

1�

2�

1� 3�

1� 1�

3�

2�

2�

3�

3W1 + 2W2 + W3 2W1 + 3W2 + W3 2W1 + W2 + 2W3 W1 + 3W2 + 2W3 W1 + 2W2 + 3W3

Strategy

W (i, j) = Wi + Wi+1 + · · ·+ Wj

e(i, j) = cost of optimal BST on Ki, Ki+1, · · · , Kj

Want e(1, n)
Greedy solution?
Pick Kr in some greedy fashion, e.g., Wr is maximum.
greedy doesn’t work, see example at the end of the notes.

3� 3�

3

6.046J

�

Lecture 10 Introduction Spring 2015

Kr

keys Ki,…, Kr-1 keys Kr+1,…, Kj
e(i, r-1) e(r+1, j)

DP Strategy: Guess all roots ⎧ ⎨ Wi if i = j
e(i, j) = ⎩ min (e(i, r − 1) + e(r + 1, j) + W (i, j)) else

i≤r≤j

+W (i, j) accounts for Wr of root Kr as well as the increase in depth by 1 of all
the other keys in the subtrees of Kr (DP tries all ways of making local choices and
takes advantage of overlapping subproblems)

Complexity: θ(n2) · θ(n) = θ(n3)
where θ(n2) is the number of subproblems and θ(n) is the time per subproblem.

Alternating Coin Game
Row of n coins of values V1, · · · , Vn, n is even. In each turn, a player selects either
the first or last coin from the row, removes it permanently, and receives the value of
the coin.

Question

Can the first player always win?
Try: 4 42 39 17 25 6

Strategy

V1, V2, · · · , Vn−1, Vn

1. Compare V1 + V3 + · · ·+ Vn−1 against V2 + V4 + · · ·+ Vn and pick whichever is
greater.

2. During the game only pick from the chosen subset (you will always be able to!)

How to maximize the amount of money won assuming you move first?

4

6.046J

Lecture 10 Introduction Spring 2015

Optimal Strategy

V (i, j): max value we can definitely win if it is our turn and only coins Vi, · · · , Vj

remain.
V (i, i) : just pick i.
V (i, i + 1): pick the maximum of the two.
V (i, i + 2), V (i, i + 3), · · ·

V (i, j) = max{(range becomes (i + 1, j))+ Vi, (range becomes (i, j − 1))+ Vj }

Solution

V (i + 1, j) subproblem with opponent picking
we are guaranteed min{V (i + 1, j − 1), V (i + 2, j)}
Where V (i+1, j−1) corresponds to opponent picking Vj and V (i+2, j) corresponds

to opponent picking Vi+1

We have

V (i + 1, j − 1), V (i, j − 2),

V (i, j) = max min + Vi,min + Vj
V (i + 2, j) V (i + 1, j − 1)

Complexity?

Θ(n 2) ·Θ(1) = Θ(n 2)

Example of Greedy Failing for Optimal BST prob
lem
Thanks to Nick Davis!

5

6.046J

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

Lecture 10 Introduction Spring 2015

2

1 3

4

1

10

8

9

Figure 1: cost = 1 × 2 + 10 × 1 + 8 × 2 + 9 × 3 = 55

3

2 4

1
1

10

8

9

Figure 2: cost = 1 × 3 + 10 × 2 + 8 × 1 + 9 × 2 = 49

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

