Lecture 6: Randomized Algorithms

- Check matrix multiplication
- Quicksort

Randomized or Probablistic Algorithms

What is a randomized algorithm?

- Algorithm that generates a random number $r \in\{1, \ldots, R\}$ and makes decisions based on r 's value.
- On the same input on different executions, a randomized algorithm may
- Run a different number of steps
- Produce a different output

Randomized algorithms can be broadly classified into two types- Monte Carlo and Las Vegas.

Monte Carlo
runs in polynomial time always
output is correct with high probability
Las Vegas
runs in expected polynomial time
output always correct

Matrix Product

$$
C=A \times B
$$

Simple algorithm: $O\left(n^{3}\right)$ multiplications.
Strassen: multiply two 2×2 matrices in 7 multiplications: $O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)$ Coppersmith-Winograd: $O\left(n^{2.376}\right)$

Matrix Product Checker

Given $n \times n$ matrices A, B, C, the goal is to check if $A \times B=C$ or not.
Question. Can we do better than carrying out the full multiplication?
We will see an $O\left(n^{2}\right)$ algorithm that:

- if $A \times B=C$, then $\operatorname{Pr}[$ output $=\mathrm{YES}]=1$.
- if $A \times B \neq C$, then $\operatorname{Pr}[$ output $=\mathrm{YES}] \leq \frac{1}{2}$.

We will assume entries in matrices $\in\{0,1\}$ and also that the arithmetic is mod 2 .

Frievald's Algorithm

Choose a random binary vector $r[1 \ldots n]$ such that $\operatorname{Pr}\left[r_{i}=1\right]=1 / 2$ independently for $r=1, \ldots, n$. The algorithm will output 'YES' if $A(B r)=C r$ and 'NO' otherwise.

Observation

The algorithm will take $O\left(n^{2}\right)$ time, since there are 3 matrix multiplications Br , $A(B r)$ and $C r$ of a $n \times n$ matrix by a $n \times 1$ matrix.

Analysis of Correctness if $A B \neq C$

Claim. If $A B \neq C$, then $\operatorname{Pr}[A B r \neq C r] \geq 1 / 2$.
Let $D=A B-C$. Our hypothesis is thus that $D \neq 0$. Clearly, there exists r such that $D r \neq 0$. Our goal is to show that there are many r such that $D r \neq 0$. Specifically, $\operatorname{Pr}[D r \neq 0] \geq 1 / 2$ for randomly chosen r.
$D=A B-C \neq 0 \Longrightarrow \exists i, j$ s.t. $d_{i j} \neq 0$. Fix vector v which is 0 in all coordinates except for $v_{j}=1 .(D v)_{i}=d_{i j} \neq 0$ implying $D v \neq 0$. Take any r that can be chosen by our algorithm. We are looking at the case where $D r=0$. Let

$$
r^{\prime}=r+v
$$

Since v is 0 everywhere except v_{j}, r^{\prime} is the same as r exept $r_{j}^{\prime}=\left(r_{j}+v_{j}\right) \bmod 2$. Thus, $D r^{\prime}=D(r+v)=0+D v \neq 0$. We see that there is a 1 to 1 correspondence between r and r^{\prime}, as if $r^{\prime}=r+V=r^{\prime \prime}+V$ then $r=r^{\prime \prime}$. This implies that number of r^{\prime} for which $D r^{\prime} \neq 0 \geq$ number of r for which $D r=0$

From this we conclude that $\operatorname{Pr}[D r \neq 0] \geq 1 / 2$

Quicksort

Divide and conquer algorithm but work mostly in the divide step rather than combine. Sorts "in place" like insertion sort and unlike mergesort (which requires $O(n)$ auxiliary space).

Different variants:

- Basic: good in average case
- Median-based pivoting: uses median finding
- Random: good for all inputs in expectation (Las Vegas algorithm)

Steps of quicksort:

- Divide: pick a pivot element x in A, partition the array into sub-arrays L, consisting of all elements $<x, G$ consisting of all elements $>x$ and E consisting of all elements $=x$.
- Conquer: recursively sort subarrays L and G
- Combine: trivial

Basic Quicksort

Pivot around $x=A[1]$ or $A[n]$ (first or last element)

- Remove, in turn, each element y from A
- Insert y into L, E or G depending on the comparison with pivot x
- Each insertion and removal takes $O(1)$ time
- Partition step takes $O(n)$ time
- To do this in place: see CLRS p. 171

Basic Quicksort Analysis

If input is sorted or reverse sorted, we are partitioning around the min or max element each time. This means one of L or G has $n-1$ elements, and the other 0 . This gives:

$$
\begin{aligned}
T(n) & =T(0)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

However, this algorithm does well on random inputs in practice.

Pivot Selection Using Median Finding

Can guarantee balanced L and G using rank/median selection algorithm that runs in $\Theta(n)$ time. The first $\Theta(n)$ below is for the pivot selection and the second for the partition step.

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+\Theta(n)+\Theta(n) \\
& T(n)=\Theta(n \log n)
\end{aligned}
$$

This algorithm is slow in practice and loses to mergesort.

Randomized Quicksort

x is chosen at random from array A (at each recursion, a random choice is made). Expected time is $O(n \log n)$ for all input arrays A. See CLRS p.181-184 for the analysis of this algorithm; we will analyze a variant of this.

"Paranoid" Quicksort

Repeat

choose pivot to be random element of A
perform Partition
Until
resulting partition is such that
$|L| \leq \frac{3}{4}|A|$ and $|G| \leq \frac{3}{4}|A|$
Recurse on L and G

"Paranoid" Quicksort Analysis

Let's define a "good pivot" and a "bad pivot"Good pivot: sizes of L and $G \leq \frac{3}{4} n$ each Bad pivot: one of L and G is $\leq \frac{3}{4} n$ each
bad pivots good pivots
bad pivots

$\frac{n}{4}$	$\frac{n}{2}$	$\frac{n}{4}$

We see that a pivot is good with probability $>1 / 2$.
Let $T(n)$ be an upper bound on the expected running time on any array of n size. $\mathrm{T}(\mathrm{n})$ comprises:

- time needed to sort left subarray
- time needed to sort right subarray
- the number of iterations to get a good call. Denote as $c \cdot n$ the cost of the partition step

Expectations

$$
T(n) \leq \max _{n / 4 \leq i \leq 3 n / 4}(T(i)+T(n-i))+E(\# \text { iterations }) \cdot c n
$$

Now, since probability of good pivot $>\frac{1}{2}$,

$$
E(\# \text { iterations }) \leq 2
$$

$$
T(n) \leq T\left(\frac{n}{4}\right)+T\left(\frac{3 n}{4}\right)+2 c n
$$

We see in the figure that the height of the tree can be at most $\log _{\frac{4}{3}}(2 c n)$ no matter what branch we follow to the bottom. At each level, we do a total of $2 c n$ work. Thus, expected runtime is $T(n)=\Theta(n \log n)$

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

