Practice Problems 1

Problem 1-1. Sub-linear time algorithms

- (a) Given a string of 0's and 1's of size n, design an algorithm as efficient as possible that estimates the fraction of 1's in the string up to an additive ϵn .
- (b) Extend the minimum spanning tree sub-linear time algorithm to handle real weights between 1 and w.

Problem 1-2. Pseudorandom Path of Length k

In recitation we considered the problem of finding a simple path with k edges in a given graph. We saw a randomized algorithm for this problem:

- Repeat the following 100k! times:
 - 1. Pick a random order on the vertices. Remove all edges that go backwards.
 - 2. Use dynamic programming to find the longest simple path in the graph. If it has at least k edges, return a sub-path with k edges.

Derandomize this algorithm using a "k-wise independent hash family." This is a hash family $H = \{h : V \to \{1, ..., k\}\}$ such that for every different $v_1, ..., v_k$ and every vector b in $\{1, ..., k\}^k$, the probability that a random $h \in H$ satisfies $h(v_1) = b_1 \land ... \land h(v_k) = b_k$ is k^{-k} .

Problem 1-3. Polynomial testing

It can be proved that an *m*-variate polynomial $P(x_1, \ldots, x_m)$ of total degree at most *D* that is not identically 0 has at most Dp^{m1} zeros modulo *p* in any set of inputs of the form Z_p^m for a prime *p* (recall that $Z_p = 0, ..., p - 1$).

Show how to find, given the coefficients of P, a point (x_1, \ldots, x_m) that is a non-zero of P:

- (a) Devise a randomized algorithm.
- (b) Use the method of conditional expectations to find a deterministic algorithm.

Problem 1-4. Computational Geometry

- (a) (CLRS Exercise 33.2-6) A *disk* consists of a circle plus its interior and is represented by its center point and radius. Two disks intersect if they have any point in common. Give an $O(n \lg n)$ time algorithm to determine whether any two disks in a set of n intersect.
- (b) (CLRS Exercise 33.4-4) Given two points p_1 and p_2 in the plane, the L_{∞} -distance between them is given by $\max(|x_1 x_2|, |y_1 y_2|)$. Modify the closest-pair algorithm to use the L_{∞} -distance.

6.046J / 18.410J Design and Analysis of Algorithms Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.