Practice Problems 1

Problem 1-1. Sub-linear time algorithms

(a) Given a string of 0 's and 1 's of size n, design an algorithm as efficient as possible that estimates the fraction of 1's in the string up to an additive ϵn.
(b) Extend the minimum spanning tree sub-linear time algorithm to handle real weights between 1 and w.

Problem 1-2. Pseudorandom Path of Length k

In recitation we considered the problem of finding a simple path with k edges in a given graph. We saw a randomized algorithm for this problem:

- Repeat the following $100 k$! times:

1. Pick a random order on the vertices. Remove all edges that go backwards.
2. Use dynamic programming to find the longest simple path in the graph. If it has at least k edges, return a sub-path with k edges.

Derandomize this algorithm using a " k-wise independent hash family." This is a hash family $H=\{h: V \rightarrow\{1, . ., k\}\}$ such that for every different v_{1}, \ldots, v_{k} and every vector b in $\{1, . ., k\}^{k}$, the probability that a random $h \in H$ satisfies $h\left(v_{1}\right)=b_{1} \wedge \ldots \wedge h\left(v_{k}\right)=b_{k}$ is k^{-k}.

Problem 1-3. Polynomial testing

It can be proved that an m-variate polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ of total degree at most D that is not identically 0 has at most $D p^{m 1}$ zeros modulo p in any set of inputs of the form Z_{p}^{m} for a prime p (recall that $Z_{p}=0, \ldots, p-1$).
Show how to find, given the coefficients of P, a point $\left(x_{1}, \ldots, x_{m}\right)$ that is a non-zero of P :
(a) Devise a randomized algorithm.
(b) Use the method of conditional expectations to find a deterministic algorithm.

Problem 1-4. Computational Geometry

(a) (CLRS Exercise 33.2-6) A disk consists of a circle plus its interior and is represented by its center point and radius. Two disks intersect if they have any point in common. Give an $O(n \lg n)$ time algorithm to determine whether any two disks in a set of n intersect.
(b) (CLRS Exercise 33.4-4) Given two points p_{1} and p_{2} in the plane, the L_{∞}-distance between them is given by $\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)$. Modify the closest-pair algorithm to use the L_{∞}-distance.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

