6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010

> Class 4 Nancy Lynch

Today

- Two more models of computation:
 - Nondeterministic Finite Automata (NFAs)
 - Add a guessing capability to FAs.
 - But provably equivalent to FAs.
 - Regular expressions
 - A different sort of model---expressions rather than machines.
 - Also provably equivalent.
- Topics:
 - Nondeterministic Finite Automata and the languages they recognize
 - NFAs vs. FAs
 - Closure of FA-recognizable languages under various operations, revisited
 - Regular expressions
 - Regular expressions denote FA-recognizable languages
- Reading: Sipser, Sections 1.2, 1.3
- Next: Section 1.4

Nondeterministic Finite Automata and the languages they recognize

Nondeterministic Finite Automata

- Generalize FAs by adding nondeterminism, allowing several alternative computations on the same input string.
- Ordinary deterministic FAs follow one path on each input.
- Two changes:
 - Allow $\delta(q, a)$ to specify more than one successor state:

– Add ϵ -transitions, transitions made "for free", without "consuming" any input symbols.

• Formally, combine these changes:

а

а

Formal Definition of an NFA

- An NFA is a 5-tuple (Q, Σ , δ , q₀, F), where:
 - -Q is a finite set of states,
 - $-\Sigma$ is a finite set (alphabet) of input symbols,
 - $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \to \mathbb{P}(\mathbb{Q})$ is the transition function,

The argumentsare a state and eitheran alphabet symbol or ϵ . Σ_{ϵ} means $\Sigma \cup \{\epsilon\}$.

The result is a set of states.

- $-q_0 \in Q$, is the start state, and
- $-F \subseteq Q$ is the set of accepting, or final states.

Formal Definition of an NFA

- An NFA is a 5-tuple (Q, $\Sigma,\,\delta,\,q_0,\,F$), where:
 - -Q is a finite set of states,
 - $-\Sigma$ is a finite set (alphabet) of input symbols,
 - $-\delta$: Q × Σ_ε → P(Q) is the transition function,
 - $-q_0 \in Q$, is the start state, and
 - $\mathsf{F} \subseteq \mathsf{Q}$ is the set of accepting, or final states.
- How many states in P(Q)?
 2^{|Q|}
- Example: Q = { a, b, c }
 P(Q) = { Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

$$Q = \{a, b, c\}$$

$$\Sigma = \{0, 1\}$$

$$q_0 = a$$

$$F = \{c\}$$

$$\delta:$$

$$D = \{a, b, c\}$$

$$A = \{0, 1 \}$$

$$A = \{a, b\}$$

NFA Example 2

g

Nondeterministic Finite Automata

- NFAs are like DFAs with two additions:
 - Allow $\delta(q, a)$ to specify more than one successor state. – Add ϵ -transitions.
- Formally, an NFA is a 5-tuple (Q, Σ , δ , q₀, F), where:
 - Q is a finite set of states,
 - $-\Sigma$ is a finite set (alphabet) of input symbols,
 - $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \to \mathbb{P}(\mathbb{Q})$ is the transition function,

Σ_{ϵ} means $\Sigma \cup \{\epsilon\}$.

- $-q_0 \in Q$, is the start state, and
- $F \subseteq Q$ is the set of accepting, or final states.

NFA Examples

Example 1:

Example 2:

How NFAs compute

• Informally:

- Follow allowed arrows in any possible way, while "consuming" the designated input symbols.
- Optionally follow any ϵ arrow at any time, without consuming any input.
- Accepts a string if some allowed sequence of transitions on that string leads to an accepting state.

Example 1

- L(M) = { w | w ends with 01 }
- M accepts exactly the strings in this set.
- Computations for input word w = 101:
 - Input word w: 1 0 1
 - States: a a a a
 - Or: aabc
- Since c is an accepting state, M accepts 101

Example 1

- Computations for input word w = 0010:
 - Possible states after 0: { a, b }
 - Then after another 0: { a, b }
 - After 1: { a, c }
 - After final 0: { a, b }
- Since neither a nor b is accepting, M does not accept 0010.

- L(M) = { w | w ends with 01 or 10 }
- Computations for w = 0010:
 - Possible states after no input: { a, b, e }
 - After 0: { a, b, e, c }
 - After 0: { a, b, e, c }
 - After 1: { a, b, e, d, f }
 - After 0: { a, b, e, c, g }
- Since g is accepting, M accepts 0010.

- Computations for w = 0010:

 0
 0
 4 a, b, e } → { a, b, e, c } → { a, b, e, c }
 1
 0
 → { a, b, e, d, f } → { a, b, e, c, g }
- Path to accepting state:

 $\begin{array}{cccc} 0 & 0 & \varepsilon & 1 & 0 \\ a \rightarrow a \rightarrow a \rightarrow e \rightarrow f \rightarrow g \end{array}$

Viewing computations as a tree

Input w = 01

In general, accept if there is a path labeled by the entire input string, possibly interspersed with εs, leading to an accepting state.

Here, leads to accepting state d.

Formal definition of computation

- Define E(q) = set of states reachable from q using zero or more ε-moves (includes q itself).
- Example 2: E(a) = { a, b, e }
- Define δ^{*}: Q × Σ^{*} → P(Q), state and string yield a set of states: δ^{*}(q, w) = states that can be reached from q by following w.
- Defined iteratively: Compute δ*(q, a₁ a₂... a_k) by:
 S := E(q)
 for i = 1 to k do
 S := ∪_{r' ∈ δ}(r, ai) for some r in S E(r')
- Or define recursively, LTTR.

Formal definition of computation

- δ*(q, w) = states that can be reached from q by following w.
- String w is accepted if δ*(q₀, w) ∩ F ≠ Ø, that is, at least one of the possible end states is accepting.
- String w is rejected if it isn't accepted.
- L(M), the language recognized by NFA M, = { w | w is accepted by M}.

NFAs vs. FAs

NFAs vs. DFAs

- DFA = Deterministic Finite Automaton, new name for ordinary Finite Automata (FA).
 - To emphasize the difference from NFAs.
- What languages are recognized by NFAs?
- Since DFAs are special cases of NFAs, NFAs recognize at least the DFA-recognizable (regular) languages.
- Nothing else!
- Theorem: If M is an NFA then L(M) is DFA-recognizable.
- Proof:
 - Given NFA M₁ = (Q₁, Σ , δ_1 , q₀₁, F₁), produce an equivalent DFA M₂ = (Q₂, Σ , δ_2 , q₀₂, F₂).
 - Equivalent means they recognize the same language, $L(M_2) = L(M_1)$.
 - Each state of M_2 represents a set of states of M_1 : $Q_2 = P(Q_1)$.
 - Start state of M₂ is E(start state of M₁) = all states M₁ could be in after scanning ε : $q_{02} = E(q_{01})$.

NFAs vs. DFAs

- Theorem: If M is an NFA then L(M) is DFA-recognizable.
- Proof:
 - Given NFA M₁ = (Q₁, Σ , δ_1 , q₀₁, F₁), produce an equivalent DFA M₂ = (Q₂, Σ , δ_2 , q₀₂, F₂).
 - $-Q_2 = P(Q_1)$
 - $-q_{02} = E(q_{01})$
 - $-F_{2} = \{ S \subseteq Q_{1} \mid S \cap F_{1} \neq \emptyset \}$
 - Accepting states of $\rm M_2$ are the sets that contain an accepting state of $\rm M_{1.}$
 - $-\delta_2(S, a) = \bigcup_{r \in S} E(\delta_1(r, a))$
 - Starting from states in S, δ_2 (S, a) gives all states M₁ could reach after a and possibly some ϵ -transitions.
 - M_2 recognizes L(M₁): At any point in processing the string, the state of M_2 represents exactly the set of states that M_1 could be in.

States of M₂: Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}

• δ₂:

• Other 5 subsets aren't reachable from start state, don't bother drawing them.

NFAs vs. DFAs

- NFAs and DFAs have the same power.
- But sometimes NFAs are simpler than equivalent DFAs.
- Example: L = strings ending in 01 or 10
 - Simple NFA, harder DFA (LTTR)
- Example: L = strings having substring 101

- Simpler---has the power to "guess" when to start matching.

NFAs vs. DFAs

- Which brings us back to last time.
- We got stuck in the proof of closure for DFA languages under concatenation:
- Example: L = { 0, 1 }* { 0 } { 0 }*

• NFA can guess when the critical 0 occurs.

Closure of regular (FArecognizable) languages under various operations, revisited

Closure under operations

- The last example suggests we retry proofs of closure of FA languages under concatenation and star, this time using NFAs.
- OK since they have the same expressive power (recognize the same languages) as DFAs.
- We already proved closure under common settheoretic operations---union, intersection, complement, difference---using DFAs.
- Got stuck on concatenation and star.
- First (warmup): Redo union proof in terms of NFAs.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- Old Proof:
 - Start with DFAs M_1 and M_2 for the same alphabet Σ .
 - Get another DFA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.
 - Idea: Run M₁ and M₂ "in parallel" on the same input. If either reaches an accepting state, accept.

Closure under union

Closure under union, general rule

• Assume:

$$-M_{1} = (Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}) -M_{2} = (Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2})$$

- Define $M_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)$, where
 - $-\mathbf{Q}_3 = \mathbf{Q}_1 \times \mathbf{Q}_2$
 - Cartesian product, {(q₁,q₂) | $q_1 \in Q_1$ and $q_2 \in Q_2$ }
 - $-\,\delta_3\,((\mathsf{q}_1,\mathsf{q}_2),\,\mathsf{a})=(\delta_1(\mathsf{q}_1,\,\mathsf{a}),\,\delta_2(\mathsf{q}_2,\,\mathsf{a}))$

$$-q_{03} = (q_{01}, q_{02})$$

 $- \, F_3 \,{=}\, \{ \, (q_1,\!q_2) \mid q_1 \in \, F_1 \text{ or } q_2 \in \, F_2 \, \}$

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof:
 - Start with NFAs M_1 and M_2 .
 - Get another NFA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof: Simpler!

- Intersection:
 - NFAs don't seem to help.
- Concatenation, star:
 - Now try NFA-based constructions.

Closure under concatenation

- $L_1 \circ L_2 = \{ x y \mid x \in L_1 \text{ and } y \in L_2 \}$
- Theorem: FA-recognizable languages are closed under concatenation.
- Proof:
 - Start with NFAs M_1 and M_2 .
 - Get another NFA, M_3 , with $L(M_3) = L(M_1) \circ L(M_2)$.

Closure under concatenation

- Example:
 - $-\Sigma = \{ 0, 1 \}, L_1 = \Sigma^*, L_2 = \{0\} \{0\}^*.$
 - $L_1 L_2$ = strings that end with a block of at least one 0 - M_1 : $\overset{0,1}{\longrightarrow}$ - M_2 : $\overset{0}{\longrightarrow}$ NFAs
 - Now combine:

Closure under star

- $L^* = \{ x \mid x = y_1 y_2 \dots y_k \text{ for some } k \ge 0, \text{ every } y \text{ in } L \}$ = $L^0 \cup L^1 \cup L^2 \cup \dots$
- Theorem: FA-recognizable languages are closed under star.
- Proof:
 - Start with FA M₁.
 - Get an NFA, M_2 , with $L(M_2) = L(M_1)^*$.

Closure under star

• Example:

$$-\Sigma = \{ 0, 1 \}, L_1 = \{ 01, 10 \}$$

 $-(L_1)^* =$ even-length strings where each pair consists of a 0 and a 1.

Closure, summary

- FA-recognizable (regular) languages are closed under set operations, concatenation, and star.
- Regular operations: Union, concatenation, and star.
- Can be used to build regular expressions, which denote languages.
- E.g., regular expression ($0 \cup 1$)* 0 0* denotes the language { 0, 1 }* {0} {0}*
- Study these next...

Regular Expressions

Regular expressions

- An algebraic-expression notation for describing (some) languages, rather than a machine representation.
- Languages described by regular expressions are exactly the FA-recognizable languages.
 - That's why FA-recognizable languages are called "regular".
- Definition: R is a regular expression over alphabet Σ exactly if R is one of the following:
 - a, for some a in Σ ,
 - ε,
 - Ø,
 - ($R_1 \cup R_2$), where R_1 and R_2 are smaller regular expressions,
 - ($R_1 \circ R_2$), where R_1 and R_2 are smaller regular expressions, or
 - (R_1^*), where R_1 is a smaller regular expression.
- A recursive definition.

Regular expressions

- **Definition:** R is a regular expression over alphabet Σ exactly if R is one of the following:
 - a, for some a in Σ ,
 - ε,
 - Ø,
 - ($R_1 \cup R_2$), where R_1 and R_2 are smaller regular expressions,
 - ($R_1 \,^\circ R_2$), where R_1 and R_2 are smaller regular expressions, or
 - (R_1^*), where R_1 is a smaller regular expression.
- These are just formal expressions---we haven't said yet what they "mean".
- Example: (((0 \cup 1) $^{\circ} \epsilon$)* \cup 0)
- Abbreviations:
 - Sometimes omit °, use juxtaposition.
 - Sometimes omit parens, use precedence of operations: * highest, then °, then \cup .
- Example: Abbreviate above as ((0 \cup 1) ϵ)* \cup 0
- Example: $(0 \cup 1)^* 111 (0 \cup 1)^*$

How regular expressions denote languages

- Define the languages recursively, based on the expression structure:
- Definition:
 - $L(a) = \{ a \}; one string, with one symbol a.$
 - $-L(\varepsilon) = \{ \varepsilon \}$; one string, with no symbols.
 - $L(\emptyset) = \emptyset$; no strings.
 - $L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$ $- L(R_1 \circ R_2) = L(R_1) \circ L(R_2)$
 - $L(R_1^*) = (L(R_1))^*$
- Example: Expression (($0 \cup 1$) ϵ)* \cup 0 denotes language { 0, 1 }* \cup { 0 } = { 0, 1 }*, all strings.
- Example: (0 ∪ 1)* 111 (0 ∪ 1)* denotes {0, 1}* {111} {0, 1}*, all strings with substring 111.

More examples

• Definition:

- $L(a) = \{a\}; one string, with one symbol a.$
- $L(\varepsilon) = \{ \varepsilon \}$; one string, with no symbols.
- $L(\emptyset) = \emptyset$; no strings.
- L($R_1 \cup R_2$) = L(R_1) \cup L(R_2)
- $L(R_{1} \circ R_{2}) = L(R_{1}) \circ L(R_{2})$
- $L(R_1^*) = (L(R_1))^*$
- Example: L = strings over { 0, 1 } with odd number of 1s.
 0* 1 0* (0* 1 0* 1 0*)*
- Example: L = strings with substring 01 or 10. $(0 \cup 1)^* 01 (0 \cup 1)^* \cup (0 \cup 1)^* 10 (0 \cup 1)^*$ Abbreviate (writing Σ for $(0 \cup 1)$): $\Sigma^* 01 \Sigma^* \cup \Sigma^* 10 \Sigma^*$

More examples

Example: L = strings with substring 01 or 10.
 (0 ∪ 1)* 01 (0 ∪ 1)* ∪ (0 ∪ 1)* 10 (0 ∪ 1)*
 Abbreviate:

 Σ^{\star} 01 $\Sigma^{\star} \cup \Sigma^{\star}$ 10 Σ^{\star}

- Example: L = strings with neither substring 01 or 10.
 - Can't write complement.
 - But can write: $0^* \cup 1^*$.
- Example: L = strings with no more than two consecutive 0s or two consecutive 1s
 - Would be easy if we could write complement.
 - ($\epsilon \cup$ 1 $\,\cup$ 11) ((0 \cup 00) (1 \cup 11))* ($\epsilon \cup$ 0 \cup 00)
 - Alternate one or two of each.

More examples

- Regular expressions commonly used to specify syntax.
 - For (portions of) programming languages
 - Editors
 - Command languages like UNIX shell
- Example: Decimal numbers $D D^* \cdot D^* \cup D^* \cdot D D^*$,

where D is the alphabet { 0, ..., 9 }

Need a digit either before or after the decimal point.

Regular Expressions Denote FA-Recognizable Languages

Languages denoted by regular expressions

- The languages denoted by regular expressions are exactly the regular (FA-recognizable) languages.
- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof: Easy.
- Theorem 2: If L is a regular language, then there is a regular expression R with L = L(R).
- **Proof:** Harder, more technical.

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - For each R, define an NFA M with L(M) = L(R).
 - Proceed by induction on the structure of R:
 - Show for the three base cases.
 - Show how to construct NFAs for more complex expressions from NFAs for their subexpressions.
 - Case 1: R = a
 - L(R) = { a }
 - Case 2: $R = \varepsilon$
 - L(R) = { ε }

Accepts only a.

З.

Accepts only

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - − Case 3: R = Ø
 - L(R) = ∅
 - Case 4: $R = R_1 \cup R_2$
 - M₁ recognizes L(R₁),
 - M₂ recognizes L(R₂).
 - Same construction we used to show regular languages are closed under union.

Accepts nothing.

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - Case 5: $R = R_1 \circ R_2$
 - M₁ recognizes L(R₁),
 - M₂ recognizes L(R₂).
 - Same construction we used to show regular languages are closed under concatenation.

- Theorem 1: If R is a regular expression, then L(R) is a regular language (recognized by a FA).
- Proof:
 - Case 6: $R = (R_1)^*$
 - M₁ recognizes L(R₁),
 - Same construction we used to show regular languages are closed under star.

Example for Theorem 1

- L = ab \cup a*
- Construct machines recursively:

- Theorem 2: If L is a regular language, then there is a regular expression R with L = L(R).
- Proof:
 - For each NFA M, define a regular expression R with L(R) = L(M).
 - Show with an example:

 Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state.

- Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions.
- First remove z:

 New label b a* describes all strings that can move the machine from state y to state q_f, visiting (just) z any number of times.

Theorem 2

- New label b*a describes all strings that can move the machine from q₀ to y, visiting (just) x any number of times.
- New label a ∪ bb* a describes all strings that can move the machine from y to y, visiting (just) x any number of times.

• Finally, remove y:

- New label describes all strings that can move the machine from q₀ to q_f, visiting (just) y any number of times.
- This final label is the needed regular expression.

- Define a generalized NFA (gNFA).
 - Same as NFA, but:
 - Only one accept state, \neq start state.
 - Start state has no incoming arrows, accept state no outgoing arrows.
 - Arrows are labeled with regular expressions.
 - How it computes: Follow an arrow labeled with a regular expression R while consuming a block of input that is a word in the language L(R).
- Convert the original NFA M to a gNFA.
- Successively transform the gNFA to equivalent gNFAs (recognize same language), each time removing one state.
- When we have 2 states and one arrow, the regular expression R on the arrow is the final answer:

- To remove a state x, consider every pair of other states, y and z, including y = z.
- New label for edge (y, z) is the union of two expressions:
 - What was there before, and
 - One for paths through (just) x.

Next time...

- Existence of non-regular languages
- Showing specific languages aren't regular
- The Pumping Lemma
- Algorithms that answer questions about FAs.
- Reading: Sipser, Section 1.4; some pieces from 4.1

6.045J / 18.400J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.