6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science Spring, 2010

Class 4
Nancy Lynch

Today

- Two more models of computation:
- Nondeterministic Finite Automata (NFAs)
- Add a guessing capability to FAs.
- But provably equivalent to FAs.
- Regular expressions
- A different sort of model---expressions rather than machines.
- Also provably equivalent.
- Topics:
- Nondeterministic Finite Automata and the languages they recognize
- NFAs vs. FAs
- Closure of FA-recognizable languages under various operations, revisited
- Regular expressions
- Regular expressions denote FA-recognizable languages
- Reading: Sipser, Sections 1.2, 1.3
- Next: Section 1.4

Nondeterministic Finite Automata

and the languages they

recognize

Nondeterministic Finite Automata

- Generalize FAs by adding nondeterminism, allowing several alternative computations on the same input string.
- Ordinary deterministic FAs follow one path on each input.
- Two changes:
- Allow $\delta(q, a)$ to specify more than one successor state:

- Add ε-transitions, transitions made "for free", without "consuming" any input symbols.
- Formally, combine these changes:

Formal Definition of an NFA

- An NFA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where:
-Q is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \rightarrow \mathrm{P}(\mathrm{Q})$ is the transition function,

The arguments
The result is a set of states.
are a state and either an alphabet symbol or
غ. Σ_{ε} means $\Sigma \cup\{\varepsilon\}$.
$-q_{0} \in Q$, is the start state, and
$-\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting, or final states.

Formal Definition of an NFA

- An NFA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where:
-Q is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function,
$-q_{0} \in Q$, is the start state, and
$-F \subseteq Q$ is the set of accepting, or final states.
- How many states in $\mathrm{P}(\mathrm{Q})$?
$2^{1 \mathrm{IV}}$
- Example: $\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
P(Q)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

NFA Example 1

$\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\Sigma=\{0,1\}$
$\mathrm{q}_{\mathrm{o}}=\mathrm{a}$
$\mathrm{F}=\{\mathrm{c}\}$
δ :

	0	1	ε
a	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{a}\}$	\varnothing
b	\varnothing	$\{\mathrm{c}\}$	\varnothing
c	\varnothing	\varnothing	\varnothing

NFA Example 2

Nondeterministic Finite Automata

- NFAs are like DFAs with two additions:
- Allow $\delta(q, a)$ to specify more than one successor state.
- Add ε-transitions.
- Formally, an NFA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where:
-Q is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \rightarrow \mathrm{P}(\mathrm{Q})$ is the transition function,

$$
\Sigma_{\varepsilon} \text { means } \Sigma \cup\{\varepsilon\} \text {. }
$$

$-q_{0} \in Q$, is the start state, and
$-F \subseteq Q$ is the set of accepting, or final states.

NFA Examples

Example 1:

Example 2:

How NFAs compute

- Informally:
- Follow allowed arrows in any possible way, while "consuming" the designated input symbols.
- Optionally follow any ε arrow at any time, without consuming any input.
- Accepts a string if some allowed sequence of transitions on that string leads to an accepting state.

Example 1

- $L(M)=\{w \mid w$ ends with 01$\}$
- M accepts exactly the strings in this set.
- Computations for input word $w=101$:
- Input word w: 101
- States:
a a a a
- Or:
a a b c
- Since c is an accepting state, M accepts 101

Example 1

- Computations for input word $w=0010$:
- Possible states after 0: $\{\mathrm{a}, \mathrm{b}\}$
- Then after another 0: $\{a, b\}$
- After 1: \{ a, c \}
- After final 0: $\{\mathrm{a}, \mathrm{b}\}$
- Since neither a nor b is accepting, M does not accept 0010.

$$
\stackrel{0}{0} \stackrel{0}{\rightarrow}\{a, b\} \xrightarrow{\rightarrow}\{a, p\} \stackrel{0}{\rightarrow}\{a, c\} \xrightarrow{\rightarrow}\{a, b\}
$$

Example 2

- $L(M)=\{w \mid w$ ends with 01 or 10$\}$
- Computations for w=0010:
- Possible states after no input: \{ a, b, e \}
- After 0: \{a, b, e, c \}
- After 0: \{a, b, e, c \}
- After 1: $\{\mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{d}, \mathrm{f}\}$
- After 0: \{a,b, e, c, g \}
- Since g is accepting, M accepts 0010.
$\{a, b, e\} \rightarrow\{a, b, e, c\} \rightarrow\{a, b, e, c\} \rightarrow\{a, b, e, d, f\} \rightarrow\{a, b, e, c, g\}$

Example 2

- Computations for w = 0010:

$$
\begin{aligned}
& 0 \\
& 0 \\
& \underset{1}{\{a, b, e\}} \underset{\sim}{\rightarrow}\{a, b, e, c\} \underset{0}{\rightarrow}\{a, b, e, c\} \\
& \rightarrow\{a, b, e, d, f\} \rightarrow\{a, b, e, c, g\}
\end{aligned}
$$

- Path to accepting state:

$$
\stackrel{0}{\rightarrow a} \underset{a}{\rightarrow} \stackrel{\varepsilon}{\rightarrow} \stackrel{1}{\rightarrow} \stackrel{0}{\rightarrow} \mathrm{~g}
$$

Viewing computations as a tree

In general, accept if there is a path labeled by the entire input string, possibly interspersed with εs, leading to an accepting state.
Here, leads to accepting state d.

Formal definition of computation

- Define $E(q)=$ set of states reachable from q using zero or more ε-moves (includes q itself).
- Example 2: $E(a)=\{a, b, e\}$
- Define $\delta^{*}: \mathrm{Q} \times \Sigma^{\star} \rightarrow \mathrm{P}(\mathrm{Q})$, state and string yield a set of states: $\delta^{\star}(\mathrm{q}, \mathrm{w})=$ states that can be reached from q by following w .
- Defined iteratively: Compute $\delta^{*}\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{k}}\right)$ by:

$$
\begin{aligned}
& S:=E(q) \\
& \text { for } i=1 \text { to } k \text { do } \\
& \quad S:=\cup_{r^{\prime}} \in \delta\left(r, \text { ai) for some } r \text { in } S E\left(r^{\prime}\right)\right.
\end{aligned}
$$

- Or define recursively, LTTR.

Formal definition of computation

- $\delta^{\star}(\mathrm{q}, \mathrm{w})=$ states that can be reached from q by following w.
- String w is accepted if $\delta^{\star}\left(q_{0}, w\right) \cap F \neq \varnothing$, that is, at least one of the possible end states is accepting.
- String w is rejected if it isn't accepted.
- $L(M)$, the language recognized by NFA M, = $\{\mathrm{w} \mid \mathrm{w}$ is accepted by M .

NFAs vs. FAs

NFAs vs. DFAs

- $D F A=$ Deterministic Finite Automaton, new name for ordinary Finite Automata (FA).
- To emphasize the difference from NFAs.
- What languages are recognized by NFAs?
- Since DFAs are special cases of NFAs, NFAs recognize at least the DFA-recognizable (regular) languages.
- Nothing else!
- Theorem: If M is an NFA then $L(M)$ is DFA-recognizable.
- Proof:
- Given NFA $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right)$, produce an equivalent DFA M_{2} $=\left(\mathrm{Q}_{2}, \Sigma, \delta_{2}, \mathrm{G}_{02}, \mathrm{~F}_{2}\right)$.
- Equivalent means they recognize the same language, $L\left(\mathrm{M}_{2}\right)=$ $\mathrm{L}\left(\mathrm{M}_{1}\right)$.
- Each state of M_{2} represents a set of states of $M_{1}: Q_{2}=P\left(Q_{1}\right)$.
- Start state of M_{2} is $E\left(\right.$ start state of $\left.M_{1}\right)=$ all states M_{1} could be in after scanning $\varepsilon: \mathrm{q}_{02}=\mathrm{E}\left(\mathrm{q}_{01}\right)$.

NFAs vs. DFAs

- Theorem: If M is an NFA then $\mathrm{L}(\mathrm{M})$ is DFArecognizable.
- Proof:
- Given NFA $M_{1}=\left(\mathrm{Q}_{1}, \Sigma, \delta_{1}, \mathrm{q}_{01}, \mathrm{~F}_{1}\right)$, produce an equivalent DFA $\mathrm{M}_{2}=\left(\mathrm{Q}_{2}, \Sigma, \delta_{2}, \mathrm{q}_{\mathrm{o} 2}, \mathrm{~F}_{2}\right)$.
$-Q_{2}=P\left(Q_{1}\right)$
$-q_{02}=E\left(q_{01}\right)$
$-F_{2}=\left\{S \subseteq Q_{1} \mid S \cap F_{1} \neq \varnothing\right\}$
- Accepting states of M_{2} are the sets that contain an accepting state of M_{1}.
$-\delta_{2}(S, a)=\cup_{r \in S} E\left(\delta_{1}(r, a)\right)$
- Starting from states in $\mathrm{S}, \delta_{2}\left(\mathrm{~S}\right.$, a) gives all states M_{1} could reach after a and possibly some ε-transitions.
$-M_{2}$ recognizes $L\left(M_{1}\right)$: At any point in processing the string, the state of M_{2} represents exactly the set of states that M_{1} could be in.

Example: NFA \rightarrow DFA

- M_{1} :

- States of M_{2} : $\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}$, \{a,b,c\}
- δ_{2} :

- Other 5 subsets aren't reachable from start state, don't bother drawing them.

NFAs vs. DFAs

- NFAs and DFAs have the same power.
- But sometimes NFAs are simpler than equivalent DFAs.
- Example: L = strings ending in 01 or 10
- Simple NFA, harder DFA (LTTR)
- Example: L = strings having substring 101
- Recall DFA:

- Simpler---has the power to "guess" when to start matching.

NFAs vs. DFAs

- Which brings us back to last time.
- We got stuck in the proof of closure for DFA languages under concatenation:
- Example: L = \{0, 1$\}^{*}\{0\}\{0\}^{*}$

- NFA can guess when the critical 0 occurs.

Closure of regular (FArecognizable) languages under various operations, revisited

Closure under operations

- The last example suggests we retry proofs of closure of FA languages under concatenation and star, this time using NFAs.
- OK since they have the same expressive power (recognize the same languages) as DFAs.
- We already proved closure under common settheoretic operations---union, intersection, complement, difference---using DFAs.
- Got stuck on concatenation and star.
- First (warmup): Redo union proof in terms of NFAs.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- Old Proof:
- Start with DFAs M_{1} and M_{2} for the same alphabet Σ.
- Get another DFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Idea: Run M_{1} and M_{2} "in parallel" on the same input. If either reaches an accepting state, accept.

Closure under union

- Example:
M_{1} : Substring 01

M_{2} : Odd number of 1 s

Closure under union, general rule

- Assume:

$$
\begin{aligned}
& -M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right) \\
& -M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)
\end{aligned}
$$

- Define $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, \mathrm{q}_{03}, \mathrm{~F}_{3}\right)$, where $-\mathrm{Q}_{3}=\mathrm{Q}_{1} \times \mathrm{Q}_{2}$
- Cartesian product, $\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{Q}_{1}\right.$ and $\left.\mathrm{q}_{2} \in \mathrm{Q}_{2}\right\}$
$-\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
$-q_{03}=\left(q_{01}, q_{02}\right)$
$-F_{3}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ or $\left.q_{2} \in F_{2}\right\}$

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof:
- Start with NFAs M_{1} and M_{2}.
- Get another NFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

Use final states from M_{1} and M_{2}.

Closure under union

- Theorem: FA-recognizable languages are closed under union.
- New Proof: Simpler!
- Intersection:
- NFAs don't seem to help.
- Concatenation, star:
- Now try NFA-based constructions.

Closure under concatenation

- $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
- Theorem: FA-recognizable languages are closed under concatenation.
- Proof:
- Start with NFAs M_{1} and M_{2}.
- Get another NFA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \circ L\left(M_{2}\right)$.

Closure under concatenation

- Example:
$-\Sigma=\{0,1\}, L_{1}=\Sigma^{*}, L_{2}=\{0\}\{0\}^{*}$.
$-L_{1} L_{2}=$ strings that end with a block of at least one 0
$-M_{1}$:

$-\mathrm{M}_{2}$:

NFAs

- Now combine:

Closure under star

- $L^{*}=\left\{x \mid x=y_{1} y_{2} \ldots y_{k}\right.$ for some $k \geq 0$, every y in $\left.L\right\}$
$=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$
- Theorem: FA-recognizable languages are closed under star.
- Proof:
- Start with FA M . $^{\text {. }}$
- Get an NFA, M_{2}, with $L\left(M_{2}\right)=L\left(M_{1}\right)^{*}$.

Closure under star

- Example:
$-\Sigma=\{0,1\}, L_{1}=\{01,10\}$
$-\left(L_{1}\right)^{*}=$ even-length strings where each pair consists of a 0 and a 1.
$-M_{1}$:
- Construct M_{2} :

Closure, summary

- FA-recognizable (regular) languages are closed under set operations, concatenation, and star.
- Regular operations: Union, concatenation, and star.
- Can be used to build regular expressions, which denote languages.
- E.g., regular expression $(0 \cup 1)^{*} 0$ 0* denotes the language $\{0,1\}^{*}\{0\}\{0\}^{*}$
- Study these next...

Regular Expressions

Regular expressions

- An algebraic-expression notation for describing (some) languages, rather than a machine representation.
- Languages described by regular expressions are exactly the FA-recognizable languages.
- That's why FA-recognizable languages are called "regular".
- Definition: R is a regular expression over alphabet Σ exactly if R is one of the following:
- a, for some a in Σ,
- ε,
- \varnothing,
- $\left(R_{1} \cup R_{2}\right)$, where R_{1} and R_{2} are smaller regular expressions,
- ($R_{1}{ }^{\circ} R_{2}$), where R_{1} and R_{2} are smaller regular expressions, or
- ($\left.R_{1}{ }^{*}\right)$, where R_{1} is a smaller regular expression.
- A recursive definition.

Regular expressions

- Definition: R is a regular expression over alphabet Σ exactly if R is one of the following:
- a, for some a in Σ,
$-\varepsilon$,
- \varnothing,
- $\left(R_{1} \cup R_{2}\right)$, where R_{1} and R_{2} are smaller regular expressions,
- ($R_{1}{ }^{\circ} R_{2}$), where R_{1} and R_{2} are smaller regular expressions, or
- ($R_{1}{ }^{*}$), where R_{1} is a smaller regular expression.
- These are just formal expressions---we haven't said yet what they "mean".
- Example: $\left(\left((0 \cup 1)^{\circ} \varepsilon\right)^{*} \cup 0\right)$
- Abbreviations:
- Sometimes omit ${ }^{\circ}$, use juxtaposition.
- Sometimes omit parens, use precedence of operations: * highest, then ${ }^{\circ}$, then \cup.
- Example: Abbreviate above as $((0 \cup 1) \varepsilon)^{\star} \cup 0$
- Example: $(0 \cup 1)^{*} 111(0 \cup 1)^{*}$

How regular expressions denote languages

- Define the languages recursively, based on the expression structure:
- Definition:
$-L(a)=\{a\} ;$ one string, with one symbol a.
$-L(\varepsilon)=\{\varepsilon\}$; one string, with no symbols.
$-L(\varnothing)=\varnothing$; no strings.
$-L\left(R_{1} \cup R_{2}\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
$-L\left(R_{1}{ }^{\circ} R_{2}\right)=L\left(R_{1}\right)^{\circ} L\left(R_{2}\right)$
$-L\left(R_{1}{ }^{*}\right)=\left(L\left(R_{1}\right)\right)^{*}$
- Example: Expression $((0 \cup 1) \varepsilon)^{*} \cup 0$ denotes language $\{0,1\}^{*} \cup\{0\}=\{0,1\}^{*}$, all strings.
- Example: $(0 \cup 1)^{*} 111(0 \cup 1)^{*}$ denotes $\{0,1\}^{*}$ $\{111\}\{0,1\}^{\star}$, all strings with substring 111.

More examples

- Definition:
$-L(a)=\{a\} ;$ one string, with one symbol a.
$-L(\varepsilon)=\{\varepsilon\}$; one string, with no symbols.
$-L(\varnothing)=\varnothing$; no strings.
$-L\left(R_{1} \cup R_{2}\right)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
$-L\left(R_{1}{ }^{\circ} R_{2}\right)=L\left(R_{1}\right){ }^{\circ} L\left(R_{2}\right)$
$-L\left(R_{1}{ }^{*}\right)=\left(L\left(R_{1}\right)\right)^{*}$
- Example: $L=$ strings over $\{0,1\}$ with odd number of 1 s .

$$
0^{*} 10^{*}\left(0 * 10^{*} 10^{*}\right)^{\star}
$$

- Example: L = strings with substring 01 or 10.

$$
(0 \cup 1)^{\star} 01(0 \cup 1)^{\star} \cup(0 \cup 1)^{\star} 10(0 \cup 1)^{\star}
$$

Abbreviate (writing Σ for $(0 \cup 1)$):

$$
\Sigma^{\star} 01 \Sigma^{\star} \cup \Sigma^{\star} 10 \Sigma^{\star}
$$

More examples

- Example: L = strings with substring 01 or 10.

$$
(0 \cup 1)^{\star} 01(0 \cup 1)^{\star} \cup(0 \cup 1)^{\star} 10(0 \cup 1)^{\star}
$$

Abbreviate:

$$
\Sigma^{\star} 01 \Sigma^{\star} \cup \Sigma^{\star} 10 \Sigma^{\star}
$$

- Example: L = strings with neither substring 01 or 10.
- Can't write complement.
- But can write: 0* \cup 1*.
- Example: L = strings with no more than two consecutive Os or two consecutive 1s
- Would be easy if we could write complement. $(\varepsilon \cup 1 \cup 11)((0 \cup 00)(1 \cup 11))^{*}(\varepsilon \cup 0 \cup 00)$
- Alternate one or two of each.

More examples

- Regular expressions commonly used to specify syntax.
- For (portions of) programming languages
- Editors
- Command languages like UNIX shell
- Example: Decimal numbers

D D*. D* $\cup D^{*}$. D D*, where D is the alphabet $\{0, \ldots, 9\}$
Need a digit either before or after the decimal point.

Regular Expressions Denote FA-Recognizable Languages

Languages denoted by regular expressions

- The languages denoted by regular expressions are exactly the regular (FA-recognizable) languages.
- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof: Easy.
- Theorem 2: If L is a regular language, then there is a regular expression R with $L=L(R)$.
- Proof: Harder, more technical.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- For each R, define an NFA M with $L(M)=L(R)$.
- Proceed by induction on the structure of R :
- Show for the three base cases.
- Show how to construct NFAs for more complex expressions from NFAs for their subexpressions.
- Case 1: R = a
- $L(R)=\{a\}$
- Case 2: $\mathrm{R}=\varepsilon$
- $L(R)=\{\varepsilon\}$

Accepts only a.

Accepts only

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 3: $\mathrm{R}=\varnothing$
- $L(R)=\varnothing$

Accepts nothing.

- Case 4: $R=R_{1} \cup R_{2}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- M_{2} recognizes $L\left(R_{2}\right)$.
- Same construction we used to show regular languages are closed under union.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 5: $R=R_{1}{ }^{\circ} R_{2}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- M_{2} recognizes $L\left(R_{2}\right)$.
- Same construction we used to show regular languages are closed under concatenation.

Theorem 1

- Theorem 1: If R is a regular expression, then $L(R)$ is a regular language (recognized by a FA).
- Proof:
- Case 6: $\mathrm{R}=\left(\mathrm{R}_{1}\right)^{\star}$
- M_{1} recognizes $L\left(R_{1}\right)$,
- Same construction we used to show regular languages are closed under star.

Example for Theorem 1

- $L=a b \cup a^{*}$
- Construct machines recursively:
- a:

- ab:

- a^{*} :

- $a b \cup a^{*}:$

Theorem 2

- Theorem 2: If L is a regular language, then there is a regular expression R with $L=L(R)$.
- Proof:
- For each NFA M, define a regular expression R with $L(R)=L(M)$.
- Show with an example:

- Convert to a special form with only one final state, no incoming arrows to start state, no outgoing arrows from final state.

Theorem 2

- Now remove states one at a time (any order), replacing labels of edges with more complicated regular expressions.
- First remove z:

- New label ba* describes all strings that can move the machine from state y to state q_{f}, visiting (just) z any number of times.

Theorem 2

- Then remove x :

- New label b*a describes all strings that can move the machine from q_{0} to y , visiting (just) x any number of times.
- New label $a \cup b^{*}$ a describes all strings that can move the machine from y to y , visiting (just) x any number of times.

Theorem 2

- Finally, remove y:

- New label describes all strings that can move the machine from q_{0} to q_{f}, visiting (just) y any number of times.
- This final label is the needed regular expression.

Theorem 2

- Define a generalized NFA (gNFA).
- Same as NFA, but:
- Only one accept state, \neq start state.
- Start state has no incoming arrows, accept state no outgoing arrows.
- Arrows are labeled with regular expressions.
- How it computes: Follow an arrow labeled with a regular expression R while consuming a block of input that is a word in the language $L(R)$.
- Convert the original NFA M to a gNFA.
- Successively transform the gNFA to equivalent gNFAs (recognize same language), each time removing one state.
- When we have 2 states and one arrow, the regular expression R on the arrow is the final answer:

Theorem 2

- To remove a state x, consider every pair of other states, y and z, including $y=z$.
- New label for edge (y, z) is the union of two expressions:
- What was there before, and
- One for paths through (just) x.
- If $\mathrm{y} \neq \mathrm{z}$:

we get:

- If $\mathrm{y}=\mathrm{z}$:

Next time...

- Existence of non-regular languages
- Showing specific languages aren't regular
- The Pumping Lemma
- Algorithms that answer questions about FAs.
- Reading: Sipser, Section 1.4; some pieces from 4.1

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

