
“mcs” — 2015/5/18 — 1:43 — page 327 — #335

9.5 Directed Acyclic Graphs & Scheduling

Some of the prerequisites of MIT computer science subjects are shown in Fig-
ure 9.6. An edge going from subject s to subject t indicates that s is listed in the
catalogue as a direct prerequisite of t . Of course, before you can take subject t ,
you have to take not only subject s, but also all the prerequisites of s, and any pre-
requisites of those prerequisites, and so on. We can state this precisely in terms of
the positive walk relation: if D is the direct prerequisite relation on subjects, then
subject u has to be completed before taking subject v iff u DC v.

Of course it would take forever to graduate if this direct prerequisite graph had
a positive length closed walk. We need to forbid such closed walks, which by
Lemma 9.2.6 is the same as forbidding cycles. So, the direct prerequisite graph
among subjects had better be acyclic:

Definition 9.5.1. A directed acyclic graph (DAG) is a directed graph with no cy-
cles.

DAGs have particular importance in computer science. They capture key con-
cepts used in analyzing task scheduling and concurrency control. When distributing
a program across multiple processors, we’re in trouble if one part of the program
needs an output that another part hasn’t generated yet! So let’s examine DAGs and
their connection to scheduling in more depth.

“mcs” — 2015/5/18 — 1:43 — page 328 — #336

328 Chapter 9 Directed graphs & Partial Orders

6.UAT All subjects are 12 units

6 units
6.UAT

6 units
6.UAT6.UAT

6 units6 units
6.UAP

6 units
6.UAP

6 units

Subjects
6.UAP 6.UAP

6 6 unitsunits

Advanced Undergraduate Subjects
AUS

Advanced Undergraduate Subjects
AUS

Advanced Undergraduate SubjectsAdvanced Undergraduate Subjects
AUS AUS 2

1

3
Header

6.033
comp sys
6.033
comp sys
6.0336.033
comp syscomp sys

6.034
AI

6.034
AI

6.0346.034
AIAI

6.046
adv algorithms

6.046
adv algoradv algoradv ithms

6.0466.046
adv algorithmsadv algorithms

6.006*
algorithms
6.006*
algorithms
6.006*6.006*
algorithmsalgorithms

6.01*
intro EECS I
6.01*

intro EECS I
6.01*6.01*

intro EECS Iintro EECS I
6.02*

intro EECS II
6.02*

intro EECS II
6.02*6.02*

intro EECS IIintro EECS II

Software LabSoftware LabSoftware LabSoftware Lab

8.028.028.028.02

coreq

6.004
comp architecture

6.004
comp architecture

6.0046.004
comp architecturecomp architecture

coreq

3
Foundation

½ + ½

2
Introductory
(= 1 Institute Lab)

2
Math

(= 2 REST)

Elementary
exposure to programming
(high school, IAP, or 6.00)

Elementary
exposure to programming
(high school, IAP, or 6.00) r 6.00) r

Elementary Elementary
exposure exposure to to programming programming
(high school, IAP, or 6.00)(high school, IAP, or 6.00)*new subjectJune 2009

18.06 or 18.03

18.06
linear algebra
18.06

linear alger alger bra
18.0618.06

linear algebralinear algebra
18.03
diff eqs
18.03
diff eqs
18.0318.03
diff diff eqseqs

6.042
discrete math
6.042

discrete math
6.0426.042

discrete mathdiscrete math

6.005*
software

6.005* 6.005*
software

6.005*6.005*
softwaresoftware

Figure 9.6 Subject prerequisites for MIT Computer Science (6-3) Majors.

New 6-3: SB in Computer Science and Engineering

6.UAP
6 units

Elementary
exposure to programming

“mcs” — 2015/5/18 — 1:43 — page 329 — #337

9.5. Directed Acyclic Graphs & Scheduling 329

left sock right sock underwear shirt

pants tie

left shoe right shoe belt

jacket

Figure 9.7 DAG describing which clothing items have to be put on before others.

9.5.1 Scheduling
In a scheduling problem, there is a set of tasks, along with a set of constraints
specifying that starting certain tasks depends on other tasks being completed be-
forehand. We can map these sets to a digraph, with the tasks as the nodes and the
direct prerequisite constraints as the edges.

For example, the DAG in Figure 9.7 describes how a man might get dressed for
a formal occasion. As we describe above, vertices correspond to garments and the
edges specify which garments have to be put on before which others.

When faced with a set of prerequisites like this one, the most basic task is finding
an order in which to perform all the tasks, one at a time, while respecting the
dependency constraints. Ordering tasks in this way is known as topological sorting.

Definition 9.5.2. A topological sort of a finite DAG is a list of all the vertices such
that each vertex v appears earlier in the list than every other vertex reachable from
v.

There are many ways to get dressed one item at a time while obeying the con-
straints of Figure 9.7. We have listed two such topological sorts in Figure 9.8. In

“mcs” — 2015/5/18 — 1:43 — page 330 — #338

330 Chapter 9 Directed graphs & Partial Orders

underwear left sock
shirt shirt
pants tie
belt underwear
tie right sock

jacket pants
left sock right shoe

right sock belt
left shoe jacket

right shoe left shoe

(a) (b)

Figure 9.8 Two possible topological sorts of the prerequisites described in Fig-
ure 9.7

.

fact, we can prove that every finite DAG has a topological sort. You can think of
this as a mathematical proof that you can indeed get dressed in the morning.

Topological sorts for finite DAGs are easy to construct by starting from minimal
elements:

Definition 9.5.3. An vertex v of a DAG, D, is minimum iff every other vertex is
reachable from v.

A vertex v is minimal iff v is not reachable from any other vertex.

It can seem peculiar to use the words “minimum” and “minimal” to talk about
vertices that start paths. These words come from the perspective that a vertex is
“smaller” than any other vertex it connects to. We’ll explore this way of thinking
about DAGs in the next section, but for now we’ll use these terms because they are
conventional.

One peculiarity of this terminology is that a DAG may have no minimum element
but lots of minimal elements. In particular, the clothing example has four minimal
elements: leftsock, rightsock, underwear, and shirt.

To build an order for getting dressed, we pick one of these minimal elements—
say, shirt. Now there is a new set of minimal elements; the three elements we didn’t
chose as step 1 are still minimal, and once we have removed shirt, tie becomes
minimal as well. We pick another minimal element, continuing in this way until all
elements have been picked. The sequence of elements in the order they were picked
will be a topological sort. This is how the topological sorts above were constructed.

So our construction shows:

“mcs” — 2015/5/18 — 1:43 — page 331 — #339

9.5. Directed Acyclic Graphs & Scheduling 331

Theorem 9.5.4. Every finite DAG has a topological sort.

There are many other ways of constructing topological sorts. For example, in-
stead of starting from the minimal elements at the beginning of paths, we could
build a topological sort starting from maximal elements at the end of paths. In fact,
we could build a topological sort by picking vertices arbitrarily from a finite DAG
and simply inserting them into the list wherever they will fit.5

9.5.2 Parallel Task Scheduling
For task dependencies, topological sorting provides a way to execute tasks one after
another while respecting those dependencies. But what if we have the ability to
execute more than one task at the same time? For example, say tasks are programs,
the DAG indicates data dependence, and we have a parallel machine with lots of
processors instead of a sequential machine with only one. How should we schedule
the tasks? Our goal should be to minimize the total time to complete all the tasks.
For simplicity, let’s say all the tasks take the same amount of time and all the
processors are identical.

So given a finite set of tasks, how long does it take to do them all in an optimal
parallel schedule? We can use walk relations on acyclic graphs to analyze this
problem.

In the first unit of time, we should do all minimal items, so we would put on our
left sock, our right sock, our underwear, and our shirt.6 In the second unit of time,
we should put on our pants and our tie. Note that we cannot put on our left or right
shoe yet, since we have not yet put on our pants. In the third unit of time, we should
put on our left shoe, our right shoe, and our belt. Finally, in the last unit of time,
we can put on our jacket. This schedule is illustrated in Figure 9.9.

The total time to do these tasks is 4 units. We cannot do better than 4 units of
time because there is a sequence of 4 tasks that must each be done before the next.
We have to put on a shirt before pants, pants before a belt, and a belt before a jacket.
Such a sequence of items is known as a chain.

Definition 9.5.5. Two vertices in a DAG are comparable when one of them is
reachable from the other. A chain in a DAG is a set of vertices such that any two of
them are comparable. A vertex in a chain that is reachable from all other vertices
in the chain is called a maximum element of the chain. A finite chain is said to end
at its maximum element.

5In fact, the DAG doesn’t even need to be finite, but you’ll be relieved to know that we have no
need to go into this.

6Yes, we know that you can’t actually put on both socks at once, but imagine you are being dressed
by a bunch of robot processors and you are in a big hurry. Still not working for you? Ok, forget about
the clothes and imagine they are programs with the precedence constraints shown in Figure 9.7.

“mcs” — 2015/5/18 — 1:43 — page 332 — #340

332 Chapter 9 Directed graphs & Partial Orders

left sock right sock underwear shirt

pants tie

left shoe right shoe belt

jacket

Figure 9.9 A parallel schedule for the tasks-getting-dressed digraph in Figure 9.7.
The tasks in Ai can be performed in step i for 1 i 4. A chain of 4 tasks (the
critical path in this example) is shown with bold edges.

“mcs” — 2015/5/18 — 1:43 — page 333 — #341

9.5. Directed Acyclic Graphs & Scheduling 333

The time it takes to schedule tasks, even with an unlimited number of processors,
is at least as large as the number of vertices in any chain. That’s because if we used
less time than the size of some chain, then two items from the chain would have to
be done at the same step, contradicting the precedence constraints. For this reason,
a largest chain is also known as a critical path. For example, Figure 9.9 shows the
critical path for the getting-dressed digraph.

In this example, we were able to schedule all the tasks with t steps, where t is
the size of the largest chain. A nice feature of DAGs is that this is always possible!
In other words, for any DAG, there is a legal parallel schedule that runs in t total
steps.

In general, a schedule for performing tasks specifies which tasks to do at succes-
sive steps. Every task, a, has to be scheduled at some step, and all the tasks that
have to be completed before task a must be scheduled for an earlier step. Here’s a
rigorous definition of schedule.

Definition 9.5.6. A partition of a set A is a set of nonempty subsets of A called the
blocks7 of the partition, such that every element of A is in exactly one block.

For example, one possible partition of the set fa; b; c; d; eg into three blocks is

fa; cg fb; eg fdg:

Definition 9.5.7. A parallel schedule for a DAG, D, is a partition of V.D/ into
blocks A0; A1; : : : ; such that when j < k, no vertex in Aj is reachable from any
vertex in Ak . The block Ak is called the set of elements scheduled at step k, and the
time of the schedule is the number of blocks. The maximum number of elements
scheduled at any step is called the number of processors required by the schedule.

A largest chain ending at an element a is called a critical path to a, and the
number of elements less than a in the chain is called the depth of a. So in any
possible parallel schedule, there must be at least depth .a/ steps before task a can
be started. In particular, the minimal elements are precisely the elements with depth
0.

There is a very simple schedule that completes every task in its minimum num-
ber of steps: just use a “greedy” strategy of performing tasks as soon as possible.
Schedule all the elements of depth k at step k. That’s how we found the above
schedule for getting dressed.

7We think it would be nicer to call them the parts of the partition, but “blocks” is the standard
terminology.

“mcs” — 2015/5/18 — 1:43 — page 334 — #342

334 Chapter 9 Directed graphs & Partial Orders

Theorem 9.5.8. A minimum time schedule for a finite DAG D consists of the sets
A0; A1; : : : ; where

Ak WWD fa 2 V.D/ j depth .a/ D kg:

We’ll leave to Problem 9.19 the proof that the sets Ak are a parallel schedule
according to Definition 9.5.7. We can summarize the story above in this way: with
an unlimited number of processors, the parallel time to complete all tasks is simply
the size of a critical path:

Corollary 9.5.9. Parallel time = size of critical path.

Things get more complex when the number of processors is bounded; see Prob-
lem 9.20 for an example.

9.5.3 Dilworth’s Lemma
Definition 9.5.10. An antichain in a DAG is a set of vertices such that no two ele-
ments in the set are comparable—no walk exists between any two different vertices
in the set.

Our conclusions about scheduling also tell us something about antichains.

Corollary 9.5.11. In a DAG, D, if the size of the largest chain is t , then V.D/ can
be partitioned into t antichains.

Proof. Let the antichains be the sets Ak WWD fa 2 V.D/ j depth .a/ D kg. It is an
easy exercise to verify that each Ak is an antichain (Problem 9.19). ⌅

Corollary 9.5.11 implies8 a famous result about acyclic digraphs:

Lemma 9.5.12 (Dilworth). For all t > 0, every DAG with n vertices must have
either a chain of size greater than t or an antichain of size at least n=t .

Proof. Assume that there is no chain of size greater than t . Let ` be the size of
the largest antichain. If we make a parallel schedule according to the proof of
Corollary 9.5.11, we create a number of antichains equal to the size of the largest
chain, which is less than or equal t . Each element belongs to exactly one antichain,
none of which are larger than `. So the total number of elements at most ` times
t—that is, `t � n. Simple division implies that ` � n=t . ⌅

8Lemma 9.5.12 also follows from a more general result known as Dilworth’s Theorem, which we
will not discuss.

“mcs” — 2015/5/18 — 1:43 — page 335 — #343

9.6. Partial Orders 335

Corollary 9.5.13. Every DAG with n vertices has a chain of size greater than
p

n

or an antichain of size at least
p

n.

Proof. Set t
pD n in Lemma 9.5.12. ⌅

Example 9.5.14. When the man in our example is getting dressed, n D 10.
Try t D 3. There is a chain of size 4.
Try t D 4. There is no chain of size 5, but there is an antichain of size 4 � 10=4.

9.6 Partial Orders

After mapping the “direct prerequisite” relation onto a digraph, we were then able
to use the tools for understanding computer scientists’ graphs to make deductions
about something as mundane as getting dressed. This may or may not have im-
pressed you, but we can do better. In the introduction to this chapter, we mentioned
a useful fact that bears repeating: any digraph is formally the same as a binary
relation whose domain and codomain are its vertices. This means that any binary
relation whose domain is the same as its codomain can be translated into a digraph!
Talking about the edges of a binary relation or the image of a set under a digraph
may seem odd at first, but doing so will allow us to draw important connections
between different types of relations. For instance, we can apply Dilworth’s lemma
to the “direct prerequisite” relation for getting dressed, because the graph of that
relation was a DAG.

But how can we tell if a binary relation is a DAG? And once we know that a
relation is a DAG, what exactly can we conclude? In this section, we will abstract
some of the properties that a binary relation might have, and use those properties
to define classes of relations. In particular, we’ll explain this section’s title, partial
orders.

9.6.1 The Properties of the Walk Relation in DAGs
To begin, let’s talk about some features common to all digraphs. Since merging a
walk from u to v with a walk from v to w gives a walk from u to w, both the walk
and positive walk relations have a relational property called transitivity:

Definition 9.6.1. A binary relation, R, on a set, A, is transitive iff

.a R b AND b R c/ IMPLIES a R c

for every a; b; c 2 A.

“mcs” — 2015/5/18 — 1:43 — page 336 — #344

336 Chapter 9 Directed graphs & Partial Orders

So we have

Lemma 9.6.2. For any digraph, G, the walk relations GC and G⇤ are transitive.

Since there is a length zero walk from any vertex to itself, the walk relation has
another relational property called reflexivity:

Definition 9.6.3. A binary relation, R, on a set, A, is reflexive iff a R a for all
a 2 A.

Now we have

Lemma 9.6.4. For any digraph, G, the walk relation G⇤ is reflexive.

We know that a digraph is a DAG iff it has no positive length closed walks. Since
any vertex on a closed walk can serve as the beginning and end of the walk, saying
a graph is a DAG is the same as saying that there is no positive length path from
any vertex back to itself. This means that the positive walk relation of DC of a
DAG has a relational property called irreflexivity.

Definition 9.6.5. A binary relation, R, on a set, A, is irreflexive iff

NOT.a R a/

for all a 2 A.

So we have

Lemma 9.6.6. R is a DAG iff RC is irreflexive.

9.6.2 Strict Partial Orders
Here is where we begin to define interesting classes of relations:

Definition 9.6.7. A relation that is transitive and irreflexive is called a strict partial
order.

A simple connection between strict partial orders and DAGs now follows from
Lemma 9.6.6:

Theorem 9.6.8. A relation R is a strict partial order iff R is the positive walk
relation of a DAG.

Strict partial orders come up in many situations which on the face of it have
nothing to do with digraphs. For example, the less-than order, <, on numbers is a
strict partial order:

“mcs” — 2015/5/18 — 1:43 — page 337 — #345

9.6. Partial Orders 337

✏ if x < y and y < z then x < z, so less-than is transitive, and

✏ NOT.x < x/, so less-than is irreflexive.

The proper containment relation ⇢ is also a partial order:

✏ if A ⇢ B and B ⇢ C then A ⇢ C , so containment is transitive, and

✏ NOT.A ⇢ A/, so proper containment is irreflexive.

If there are two vertices that are reachable from each other, then there is a posi-
tive length closed walk that starts at one vertex, goes to the other, and then comes
back. So DAGs are digraphs in which no two vertices are mutually reachable. This
corresponds to a relational property called asymmetry.

Definition 9.6.9. A binary relation, R, on a set, A, is asymmetric iff

a R b IMPLIES NOT.b R a/

for all a; b 2 A.

So we can also characterize DAGs in terms of asymmetry:

Corollary 9.6.10. A digraph D is a DAG iff DC is asymmetric.

Corollary 9.6.10 and Theorem 9.6.8 combine to give

Corollary 9.6.11. A binary relation R on a set A is a strict partial order iff it is
transitive and asymmetric.9

A strict partial order may be the positive walk relation of different DAGs. This
raises the question of finding a DAG with the smallest number of edges that deter-
mines a given strict partial order. For finite strict partial orders, the smallest such
DAG turns out to be unique and easy to find (see Problem 9.25).

9.6.3 Weak Partial Orders
The less-than-or-equal relation,, is at least as familiar as the less-than strict partial
order, and the ordinary containment relation, ✓, is even more common than the
proper containment relation. These are examples of weak partial orders, which are
just strict partial orders with the additional condition that every element is related
to itself. To state this precisely, we have to relax the asymmetry property so it
does not apply when a vertex is compared to itself; this relaxed property is called
antisymmetry:

9Some texts use this Corollary to define strict partial orders.

“mcs” — 2015/5/18 — 1:43 — page 338 — #346

338 Chapter 9 Directed graphs & Partial Orders

Definition 9.6.12. A binary relation, R, on a set A, is antisymmetric iff, for all
a ¤ b 2 A,

a R b IMPLIES NOT.b R a/

Now we can give an axiomatic definition of weak partial orders that parallels the
definition of strict partial orders.10

Definition 9.6.13. A binary relation on a set is a weak partial order iff it is transi-
tive, reflexive, and antisymmetric.

The following lemma gives another characterization of weak partial orders that
follows directly from this definition.

Lemma 9.6.14. A relation R on a set, A, is a weak partial order iff there is a strict
partial order, S , on A such that

a R b iff .a S b OR a D b/;

for all a; b 2 A.

Since a length zero walk goes from a vertex to itself, this lemma combined with
Theorem 9.6.8 yields:

Corollary 9.6.15. A relation is a weak partial order iff it is the walk relation of a
DAG.

For weak partial orders in general, we often write an ordering-style symbol like
� or v instead of a letter symbol like R.11 Likewise, we generally use � or @ to
indicate a strict partial order.

Two more examples of partial orders are worth mentioning:

Example 9.6.16. Let A be some family of sets and define a R b iff a � b. Then R

is a strict partial order.

Example 9.6.17. The divisibility relation is a weak partial order on the nonnegative
integers.

For practice with the definitions, you can check that two more examples are
vacuously partial orders on a set D: the identity relation IdD is a weak partial
order, and the empty relation—the relation with no arrows—is a strict partial order.

10Some authors define partial orders to be what we call weak partial orders, but we’ll use the phrase
“partial order” to mean either a weak or strict one.

11General relations are usually denoted by a letter like R instead of a cryptic squiggly symbol, so
� is kind of like the musical performer/composer Prince, who redefined the spelling of his name to
be his own squiggly symbol. A few years ago he gave up and went back to the spelling “Prince.”

“mcs” — 2015/5/18 — 1:43 — page 339 — #347

9.7. Representing Partial Orders by Set Containment 339

9.7 Representing Partial Orders by Set Containment

Axioms can be a great way to abstract and reason about important properties of
objects, but it helps to have a clear picture of the things that satisfy the axioms.
DAGs provide one way to picture partial orders, but it also can help to picture them
in terms of other familiar mathematical objects. In this section, we’ll show that
every partial order can be pictured as a collection of sets related by containment.
That is, every partial order has the “same shape” as such a collection. The technical
word for “same shape” is “isomorphic.”

Definition 9.7.1. A binary relation, R, on a set, A, is isomorphic to a relation, S ,
on a set B iff there is a relation-preserving bijection from A to B; that is, there is a
bijection f W A! B such that for all a; a0 2 A,

a R a0 iff f .a/ S f .a0/:

To picture a partial order, �, on a set, A, as a collection of sets, we simply
represent each element A by the set of elements that are � to that element, that is,

a ! fb 2 A j b � ag:

For example, if � is the divisibility relation on the set of integers, f1; 3; 4; 6; 8; 12g,
then we represent each of these integers by the set of integers in A that divides it.
So

1 ! f1g
3 ! f1; 3g
4 ! f1; 4g
6 ! f1; 3; 6g
8 ! f1; 4; 8g

12 ! f1; 3; 4; 6; 12g

So, the fact that 3 j 12 corresponds to the fact that f1; 3g ✓ f1; 3; 4; 6; 12g.
In this way we have completely captured the weak partial order � by the subset

relation on the corresponding sets. Formally, we have

Lemma 9.7.2. Let � be a weak partial order on a set, A. Then � is isomorphic to
the subset relation, ✓, on the collection of inverse images under the � relation of
elements a 2 A.

“mcs” — 2015/5/18 — 1:43 — page 340 — #348

340 Chapter 9 Directed graphs & Partial Orders

We leave the proof to Problem 9.29. Essentially the same construction shows
that strict partial orders can be represented by sets under the proper subset relation,
⇢ (Problem 9.30). To summarize:

Theorem 9.7.3. Every weak partial order, �, is isomorphic to the subset relation,
✓, on a collection of sets.

Every strict partial order, �, is isomorphic to the proper subset relation, ⇢, on a
collection of sets.

9.8 Linear Orders

The familiar order relations on numbers have an important additional property:
given two different numbers, one will be bigger than the other. Partial orders with
this property are said to be linear orders. You can think of a linear order as one
where all the elements are lined up so that everyone knows exactly who is ahead
and who is behind them in the line. 12

Definition 9.8.1. Let R be a binary relation on a set, A, and let a; b be elements
of A. Then a and b are comparable with respect to R iff Œa R b OR b R aç.
A partial order for which every two different elements are comparable is called a
linear order.

So < and are linear orders on R. On the other hand, the subset relation is
not linear, since, for example, any two different finite sets of the same size will be
incomparable under ✓. The prerequisite relation on Course 6 required subjects is
also not linear because, for example, neither 8.01 nor 6.042 is a prerequisite of the
other.

9.9 Product Orders

Taking the product of two relations is a useful way to construct new relations from
old ones.

12Linear orders are often called “total” orders, but this terminology conflicts with the definition of
“total relation,” and it regularly confuses students.

Being a linear order is a much stronger condition than being a partial order that is a total relation.
For example, any weak partial order is a total relation but generally won’t be linear.

“mcs” — 2015/5/18 — 1:43 — page 341 — #349

9.10. Equivalence Relations 341

Definition 9.9.1. The product, R1 ⇥ R2, of relations R1 and R2 is defined to be
the relation with

domain.R1 ⇥R2/ WWD domain.R1/ ⇥ domain.R2/;

codomain.R1 ⇥R2/ WWD codomain.R1/ ⇥ codomain.R2/;

.a1; a2/ .R1 ⇥R2/ .b1; b2/ iff Œa1 R1 b1 and a2 R2 b2ç:

It follows directly from the definitions that products preserve the properties of
transitivity, reflexivity, irreflexivity, and antisymmetry (see Problem 9.41). If R1

and R2 both have one of these properties, then so does R1 ⇥ R2. This implies that
if R1 and R2 are both partial orders, then so is R1 ⇥R2.

Example 9.9.2. Define a relation, Y , on age-height pairs of being younger and
shorter. This is the relation on the set of pairs .y; h/ where y is a nonnegative
integer 2400 that we interpret as an age in months, and h is a nonnegative integer
 120 describing height in inches. We define Y by the rule

.y1; h1/ Y .y2; h2/ iff y1 y2 AND h1 h2:

That is, Y is the product of the -relation on ages and the -relation on heights.
Since both ages and heights are ordered numerically, the age-height relation Y is

a partial order. Now suppose we have a class of 101 students. Then we can apply
Dilworth’s lemma 9.5.12 to conclude that there is a chain of 11 students—that is,
11 students who get taller as they get older–or an antichain of 11 students—that is,
11 students who get taller as they get younger, which makes for an amusing in-class
demo.

On the other hand, the property of being a linear order is not preserved. For
example, the age-height relation Y is the product of two linear orders, but it is not
linear: the age 240 months, height 68 inches pair, (240,68), and the pair (228,72)
are incomparable under Y .

9.10 Equivalence Relations

Definition 9.10.1. A relation is an equivalence relation if it is reflexive, symmetric,
and transitive.

Congruence modulo n is an important example of an equivalence relation:

✏ It is reflexive because x ⌘ x .mod n/.

“mcs” — 2015/5/18 — 1:43 — page 342 — #350

342 Chapter 9 Directed graphs & Partial Orders

✏ It is symmetric because x ⌘ y .mod n/ implies y ⌘ x .mod n/.

✏ It is transitive because x ⌘ y .mod n/ and y ⌘ z .mod n/ imply that x ⌘ z

.mod n/.

There is an even more well-known example of an equivalence relation: equality
itself.

Any total function defines an equivalence relation on its domain:

Definition 9.10.2. If f W A ! B is a total function, define a relation ⌘f by the
rule:

a ⌘f a0 IFF f .a/ D f .a0/:

From its definition, ⌘f is reflexive, symmetric and transitive because these are
properties of equality. That is, ⌘f is an equivalence relation. This observation
gives another way to see that congruence modulo n is an equivalence relation:
the Remainder Lemma 8.6.1 implies that congruence modulo n is the same as ⌘r

where r.a/ is the remainder of a divided by n.
In fact, a relation is an equivalence relation iff it equals ⌘f for some total func-

tion f (see Problem 9.47). So equivalence relations could have been defined using
Definition 9.10.2.

9.10.1 Equivalence Classes
Equivalence relations are closely related to partitions because the images of ele-
ments under an equivalence relation are the blocks of a partition.

Definition 9.10.3. Given an equivalence relation R W A ! A, the equivalence
class, ŒaçR, of an element a 2 A is the set of all elements of A related to a by R.
Namely,

ŒaçR WWD fx 2 A j a R xg:

In other words, ŒaçR is the image R.a/.
For example, suppose that A D Z and a R b means that a ⌘ b .mod 5/. Then

Œ7çR D f: : : ;�3; 2; 7; 12; 22; : : :g:

Notice that 7, 12, 17, etc., all have the same equivalence class; that is, Œ7çR D
Œ12çR D Œ17çR D � � � .

There is an exact correspondence between equivalence relations on A and parti-
tions of A. Namely, given any partition of a set, being in the same block is obviously
an equivalence relation. On the other hand we have:

“mcs” — 2015/5/18 — 1:43 — page 343 — #351

9.11. Summary of Relational Properties 343

Theorem 9.10.4. The equivalence classes of an equivalence relation on a set A

are the blocks of a partition of A.

We’ll leave the proof of Theorem 9.10.4 as a basic exercise in axiomatic reason-
ing (see Problem 9.46), but let’s look at an example. The congruent-mod-5 relation
partitions the integers into five equivalence classes:

f: : : ;�5; 0; 5; 10; 15; 20; : : :g
f: : : ;�4; 1; 6; 11; 16; 21; : : :g
f: : : ;�3; 2; 7; 12; 17; 22; : : :g
f: : : ;�2; 3; 8; 13; 18; 23; : : :g
f: : : ;�1; 4; 9; 14; 19; 24; : : :g

In these terms, x ⌘ y .mod 5/ is equivalent to the assertion that x and y are both
in the same block of this partition. For example, 6 ⌘ 16 .mod 5/, because they’re
both in the second block, but 2 ⌘ 9 .mod 5/ because 2 is in the third block while
9 is in the last block.

In social terms, if “likes” were an equivalence relation, then everyone would be
partitioned into cliques of friends who all like each other and no one else.

9.11 Summary of Relational Properties

A relation R W A! A is the same as a digraph with vertices A.

Reflexivity R is reflexive when

8x 2 A: x R x:

Every vertex in R has a self-loop.

Irreflexivity R is irreflexive when

NOTŒ9x 2 A: x R xç:

There are no self-loops in R.

Symmetry R is symmetric when

8x; y 2 A: x R y IMPLIES y R x:

If there is an edge from x to y in R, then there is an edge back from y to x

as well.

6

“mcs” — 2015/5/18 — 1:43 — page 344 — #352

344 Chapter 9 Directed graphs & Partial Orders

Asymmetry R is asymmetric when

8x; y 2 A: x R y IMPLIES NOT.y R x/:

There is at most one directed edge between any two vertices in R, and there
are no self-loops.

Antisymmetry R is antisymmetric when

8x ¤ y 2 A: x R y IMPLIES NOT.y R x/:

Equivalently,

8x; y 2 A: .x R y AND y R x/ IMPLIES x D y:

There is at most one directed edge between any two distinct vertices, but
there may be self-loops.

Transitivity R is transitive when

8x; y; z 2 A: .x R y AND y R z/ IMPLIES x R z:

If there is a positive length path from u to v, then there is an edge from u

to v.

Linear R is linear when

8x ¤ y 2 A: .x R y OR y R x/

Given any two vertices in R, there is an edge in one direction or the other
between them.

For any finite, nonempty set of vertices of R, there is a directed path going
through exactly these vertices.

Strict Partial Order R is a strict partial order iff R is transitive and irreflexive iff
R is transitive and asymmetric iff it is the positive length walk relation of a
DAG.

Weak Partial Order R is a weak partial order iff R is transitive and anti-symmetric
and reflexive iff R is the walk relation of a DAG.

Equivalence Relation R is an equivalence relation iff R is reflexive, symmetric
and transitive iff R equals the in-the-same-block-relation for some partition
of domain.R/.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

