

> Counting in Gambling
> What fraction of poker hands are "a pair of Jacks?" (probability of a pair
> of Jacks)

跂: Counting in Algorithms \# ops to update a data

$$
\begin{aligned}
& \text { structure (\# comparisons } \\
& \text { needed to sort } n \text { items) } \\
& \text { \# steps in a computation (\# } \\
& \text { multiplies to compute } d^{n} \text {) }
\end{aligned}
$$

Counting in Games
\# different chess positions after n moves?
\# different positions for a Rubik's cube?

Counting in Cryptography
 \# possible passwords
 \# possible keys
 Albert R Meyer, April 17, 2013

Sum Rule

- Class has 43 women, 54 men so total enrollment $=43+54=97$
- 26 lower case letters, 26 upper case letters, and 10 digits, so $\#$ characters $=26+26+10=62$

Fid Product Rule

If there are 4 boys and 3 girls, there are

$$
4 \cdot 3=12
$$

different boy/girl couples

Product Rule
 If $|A|=m$ and $|B|=n$, then
 $|A \times B|=m \cdot n$
 $A=\{a, b, c, d\}, \quad B=\{1,2,3\}$
 $A \times B=\{(a, 1),(a, 2),(a, 3)$,
 (b,1),(b,2),(b,3),
 (c,1),(c,2), (c,3),
 (d,1),(d, 2),(d,3)\}

 Product Rule: Counting Strings
 \# length \(n\) strings
 from an alphabet of
 size \(m\) is
 踢: initi Product Rule: Counting Strings \# length n strings from an alphabet of size m is

m^{n}
 m^{n}

Product Rule: Counting Strings \# length-4 binary strings $=|B \times B \times B \times B|$
$=\left|B^{4}\right|$ where $B::=\{0,1\}$
$=2 \cdot 2 \cdot 2 \cdot 2=2^{4}$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

