

$E \subseteq$ Even

by structural induction on $x \in E$ with ind. hyp. " x is even"

- 0 is even
- if n is even, then so is

$$
n+2,-n
$$

Structural Induction

To prove $P(x)$ holds for all x in recursively defined set R, prove $\cdot P(b)$ for each base case $b \in R$ - $P(c(x))$ for each constructor, c, assuming ind. hyp. $P(x)$
@(®)(O)
Albert R Meyer, February 29, 2012
Albert R Meyer, February 29, 2012

```
Structural Induction on M
    Proof:
    Ind. Hyp. P(s) ::= ( }s\inEQ
    Base case ( }s=\lambda\mathrm{ ):
    \lambda has O ]'s and O ['s,
    so P(\lambda) is true.
    base case is OK
```

Structural Induction on M
Constructor step: $s=[r] \dagger$ can assume $P(r)$ and $P(t)$

Structural Induction on M so by struct. induct.
$M \subseteq E Q$ QED Albert R Meyer, February 29, 2012


```
    Lemma.
        F18 is closed under
        taking derivatives:
    if f}\inF18,\mathrm{ then }\mp@subsup{f}{}{\prime}\inF1
    Class Problem
@(O)O
    Abert R Meyer. February 29, 2012

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.```

