Strong Induction
 ©
 Albert R Meyer February 24, 2012 lec 3F. 1

\quad Strong Induction
Prove $P(0)$. Then prove $P(n+1)$
assuming all of
$P(0), P(1), \ldots, P(n)$
(instead of just $P(n)$).
Conclude $\forall m \cdot P(m)$

	Postage by Strong	Induction
avai	lable stamps:	
	Get any amount ${ }^{5 \$}$	$\geq 8 \stackrel{3 q}{\$ \downarrow}$
base	case P(0): make 0	+8\$
		O.K

[^0]

\section*{| 6 | 13 | | |
| :---: | :---: | :---: | :---: |
| 12 | 10 | 10 | |
| 3 | 1 | 5 | 5 |
| 15 | 8 | 11 | 2 |}

Postage by Strong Induction
We conclude by strong induction that, using $3 \$$ and $5 \$$ stamps, $n+8 \$$ postage can be formed for all $n \geq 0$.
© Albert R Meyer February 24, 2012
Postage by Strong Induction inductive step cases:

$$
n=0, \quad 0+9 \Phi=
$$

$$
n=1,1+9 \Phi=
$$

(3)
© (i)(〇) Albert R Meyer
February 24, 2012 \qquad
lec 3F. 10

Analyzing the Stacking Game

Claim: Every way of unstacking n blocks gives the same score:

$$
(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}
$$

Analyzing the Game

 Base case $n=0$:

$$
\text { score }=0=\frac{0(0-1)}{2}
$$

Claim (0) is

©(Albert R Meyer February 24, 2012 |decafu414
Proving the Claim by Induction Inductive step.
Case $n+1=1$. verify for 1 -stack:

$$
\begin{gathered}
\text { score }=0=\frac{1(1-1)}{2} \\
C(1) \text { is }
\end{gathered}
$$

eec 3 F. 16

6	2	13	7
12		10	5
3	1	4	14
15	8	11	2

Proving the Claim by Induction
by strong induction:

$$
\begin{aligned}
& a \text {-stack score }=\frac{a(a-1)}{2} \\
& b \text {-stack score }=\frac{b(b-1)}{2}
\end{aligned}
$$

 total $(a+b)$-stack score $=$ $a b+\frac{a(a-1)}{2}+\frac{b(b-1)}{2}=$ $\frac{(a+b)((a+b)-1)}{2}=\frac{(n+1) n}{2}$ so $C(n+1)$ is $0 . k$ We're done!
© \mathbf{B} Albert R Meyer \quad February 24, 2012

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: | 6 | 2 | 13 | 7 |
 | :---: | :---: | :---: | :---: |
 | 12 | 10 | 5 | |
 | 3 | 1 | 4 | 14 |
 | 15 | 8 | 11 | 2 |

 Postage by Strong Induction
 available stamps:

 Thm: Get any amount $\geq 8 \mathbb{}$ inductive step:
 Assume all from 8 to $n+8 \$$.
 © (®®()
 Albert R Meyer February 24, 2012 \qquad

