

## Die Hard

Simon says: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on the scale and the timer will stop. You must be precise; one ounce more or less will result in detonation. If you're still alive in 5 minutes, we'll speak.

Albert R Meyer February 27, 2013
statemachine. 5



## State machines

5. Pour big jug into little jug
(i) If no overflow, then $(b, l) \rightarrow(0, b+1)$ b+1<3
(ii) otherwise $(b, l) \rightarrow(b-(3-l), 3)$
6. Pour little jug into big jug.

Likewise

## State machines

Die Hard Transitions:

1. Fill little jug:
$(b, l) \rightarrow(b, 3)$ for $I<3$
2. Fill big jug:
$(b, l) \rightarrow(5, l)$ for $b<5$
3. Empty little jug:
$(b, l) \rightarrow(b, 0)$ for $I>0$
4. Empty big jug:
$(b, I) \rightarrow(0, I)$ for $b>0$
@囚తఠ
Albert R Meyer February 27, 2013
statemachine. 10
Work it out now!




## Preserved Invariants

Die hard once and for all preserved invariant:

$$
(b, l) \rightarrow(b-(3-l), 3)
$$

$$
P((b, \mid))::=(3 \mid b \text { AND } 3 \mid l)
$$

@(®๔( Albert R Meyer February 27, 2013
statemachine. 23


```
    (induction for state machines)
Preserved Invariant, P(state):
if P(q) and (q) }->P\mathrm{ , then P(r)
Conclusion: if P(start), then P(r)
    for all reachable states r,
    including final state (if any)
```



Image by MIT OpenCourseWare.


Image by MIT OpenCourseWare.


NO! preserved invariant: $P((x, y))::=x+y$ is even move adds $\pm 1$ to both $x \& y$, preserving parity of $x+y$. Also, $P((0,0))$ is true.

```
Robot Preserved Invariant
So in all positions ( \(x, y\) ) reachable from \((0,0)\), \(x+y\) stays even
But \(1+0=1\) is odd, so \((1,0)\) is not reachable
\[
\text { Albert R Meyer February 27, } 2013
\]
statemachine. 31
```

| $6^{6 \cdot 9}{ }^{13} 7$ |  |
| :---: | :---: |
| 12.105 | The Fifteen Puz |
|  | Explained! |

--by similar reasoning details in problem 2

```
*)
    compute ab using registers X,Y,Z , R
        X:=a; Y:= 1; Z:= b;
        REPEAT:
        if Z=0, then return Y
        R:= remdr (Z,2); Z:= quotnt(Z,2)
        if R=1,then Y:= X·Y
        X:= X }\mp@subsup{}{}{2
```

Fast Exponentiation
Preserved Invariant: $Y X^{Z}=a^{b}$ $(X, Y, Z) \rightarrow \quad[Z>0$ is odd]

$$
\left(X^{2}, X \cdot Y,(Z-1) / 2\right)
$$

$$
(X \cdot Y)\left(X^{2}\right)^{(Z-1) / 2}=(X \cdot Y) X^{Z-1}
$$

$$
=Y X^{Z}=a^{b}
$$

$$
\begin{array}{|ccc|}
\hline \text { @ब区- } & \text { Albert R Meyer } & \text { February 27, 2013 }
\end{array}
$$

```


MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.```

