

Die Hard

Simon says: On the fountain, there should be 2 jugs, do you see them? A 5-gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water and place it on the scale and the timer will stop. You must be precise; one ounce more or less will result in detonation. If you're still alive in 5 minutes, we'll speak.

6 9 13 7 12 10 5 3 1 4 14 15 8 11 2)ie Har	d	
Transferring water:			
	\Box		
3 Gallon J	ug	5 Gallon Jug	
		-	
080	Albert R Meyer	February 27, 2013	statemachine.7

0000

Die Hard

Albert R Mever

Simon's challenge: Disarm the bomb by putting precisely 4 gallons of water on the scale, or it will blow up. (You can figure out how)

February 27, 2013

statemachine.12

Floyd's Invariant Principle

(induction for state machines) Preserved Invariant, P(state): if P(q) and $(q) \rightarrow (r)$, then P(r)Conclusion: if P(start), then P(r)for all reachable states r, including final state (if any)

Image by MIT OpenCourseWare.

Robot Preserved Invariant NO! preserved invariant: P((x, y)) ::= x + y is evenmove adds ±1 to both x & y, preserving parity of x+y. Also, P((0, 0)) is true.

February 27, 2013

Albert R Meyer

000

statemachine.30

MIT OpenCourseWare http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.