


```
|6
*
    A\cup(B\capC)=(A\cupB)\cap(A\cupC)
proof: }x\inA\cup(B\capC
x\inA OR }x\in(B\capC) (def of U) if
x\inA OR ( }x\inB\mathrm{ AND }x\inC\mathrm{ ) (def n) iff
( }x\inAOR Ox\inB)AND (x\inA OR x\inC
    (by the equivalence)
A set-theoretic equality
\(A \cup(B \cap C)=(A \cup B) \cap(A \cup C)\) proof: \(x \in A \cup(B \cap C)\) iff \(x \in A\) OR \(x \in(B \cap C)\) (def of \(U\) ) iff \(x \in A\) OR ( \(x \in B\) AND \(x \in C\) ) (def \(\cap\) ) iff \((x \in A O R x \in B)\) AND \((x \in A O R x \in C)\) (by the equivalence)
```


\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 |}

complement

$$
\bar{A}::=D-A=\{x \mid x \notin A\}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

