

$$\begin{array}{c} \overbrace{10}{12} & \overbrace{10}{12} & Self application \\ \hline Self application \\ \hline$$

Self application
Self application
compose procedures
(define (comp2 f)
(compose f f))
((comp2 square) 3)

$$\Rightarrow$$
 81
Metr Metr. Meth 205

Russell's ParadoxLet
$$W ::= \{s \in Sets \mid s \notin s\}$$
So $[s \in W \ IFF \ s \notin s]$ Now let s be W, and
reach a contradiction: $[W \in W \ IFF \ W \notin W]$

080

Disaster: Math is broken! I am the Pope, Pigs fly, and verified programs crash...

Albert R Meyer, March 4, 2015

<u>@ 080</u>

russell 16

Zermelo-Frankel Set Theory

No simple answer, but the axioms of Zermelo-Frankel along with the Choice axiom (ZFC) do a pretty good job.

Albert R Meyer, March 4, 2015

russell.19

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.