MIT 6.042J/18.062J
 Set Theory: Russell Paradox
 Albert R Meyer, March 4, 2015


```
\allol
    Let W ::={s\in Sets | s\not\ins}
    so [s\inW IFF s&s]
    Now let s be W, and
    reach a contradiction:
    W W W IFF W&W
```


 I am the Pope, Pigs fly, and verified programs crash...
 Albert R Meyer, March 4, 2015

> Assumes that W is a set! We can avoid the paradox, if we deny that W is a set! ...which raises the key question: just which well-defined collections are sets?

Albert R Meyer, March 4, 2015 ...but paradox is buggy Assumes that W is a set! $[s \in W$ IFF $s \notin s]$ for all sets s
...can only substitute W for s if W is a set

Albert R Meyer, March 4, 2015

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | 4 | 1 |
 | 12 | 1 | 4 | 14 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | | 4 | 2 |
 Zermelo-Frankel Set Theory}

No simple answer, but the axioms of Zermelo-Frankel along with the Choice axiom (ZFC) do a pretty good job.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

