


```
|12 [r: 
|\mp@code{lal:c}
Binary relations A binary relation associates elements of one set called the domain, with elements of another set called the codomain
```



Images under $R$ $R($ Jason $)=$ subjects Jason is registered for

Jason R 6.042 infix
R(Jason, 6.042) prefix (Jason, 6.042) $\in R$ (Jason, 6.042) $\in \operatorname{graph}(R)$



Images under $R$ $R(X)$ ::= all the subjects being taken by students in the set $X$
Images under R
$R(\{$ Jason, Yihui $\}=$
subjects with Jason
or Yihui registered

## Images under $R$

$$
R(\text { Jason })=\text { subjects Jason is }
$$ registered for $=\{6.042,6.012\}$

Images under $R$
$R(X)$ ::= everything $R$ relates to things in $X$


\section*{| 6 | 2 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | 10 |  |  |
|  | 10 |  |  | <br> | 12 |  | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 | <br> Images under $R$ <br> $R(\{$ Jason, Yihui\} $)=$ <br> subjects with Jason or Yihui registered <br> $=\{6.042,6.012,6.004\}$}


 $R(X)$ ::= endpoints of arrows from points in $X$ $\{j \in J \mid \underbrace{\exists d \in X . d R j\}}$ an arrow from $\times$ goes to $j$



Images under $\mathrm{R}^{-1}$
$R^{-1}(6.012)=\{$ Jason, Yihui\}
$R^{-1}(\{6.012,6.003\})=$
\{Jason, Joan, Yihui\}
$R^{-1}(Y)$ aka the inverse image

$$
\text { of } Y \text { under } R
$$




Inverse image under $R$
$R^{-1}(J)=$ all the stuDents registered for some subJect
Every student is registered for some subject:

$$
D \subseteq R^{-1}(J)
$$

(not true: Adam wasn't registered)


$R(V(X))=$ subJects that advisees of profs in $\times$ are registered for

$$
\begin{aligned}
& \text { Composing } R \text { and } V \\
& (R \circ V)(X)::=R(V(X)) \\
& \text { is the composition } \\
& \text { of } R \text { and } V
\end{aligned}
$$

$$
R(V(\{[\mathcal{F} T L L, T L L P P\})\})=R(\{\text { Joan, Yihuii, Addarm }\}\})
$$

|  | Composing $R$ and $V$ |
| :---: | :---: |
|  | V ::= "prof has advisee registered for" |
|  | ) $\mathrm{l:=}$ prof phas anadvisee registered in subject $j$ |
| 毋) | - |




㩆四? Composing $R$ and $V$
ARM $(R \circ V) 6.012$ because
ARM V Yihui AND YihuiR 6.012 $p(\underbrace{R \circ V}) j$ IFF
$\exists d \in D .[p \underbrace{V d \text { AND } d R} j]$ note: $V, R$ in reverse order
 Februar 21. 2011
set operations on relations
Profs should not
teach their advisees:
$\forall p \forall j$. NOT $(p(R \circ V) j$ AND $p T j)$

$$
T \cap(R \circ V)=\varnothing
$$


set operations on relations
Profs should not
teach their advisees:

$$
\forall p \forall j . \operatorname{NOT}(p(R \circ V) j \text { AND } p T j)
$$

$$
R \circ V \subseteq \bar{T}
$$

##  <br> A binary relation, $R$, from a set $A$ to a set $B$ associates elements of $A$ with elements of $B$.









MIT OpenCourseWare
http://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

