
Recursive function on M
Def. tree-depth (s) for $s \in M$
$\operatorname{td}(\lambda)::=0$
$\operatorname{td}([s] \dagger)::=$
$1+\max \{\operatorname{td}(s), \operatorname{td}(\dagger)\}$

Recursive Function

To define a function, f, on a recursively defined set R, define

- $f(b)$ explicitly for each base case $b \in R$
- $f(c(x))$ for each constructor, c, in terms of x and $f(x)$
©(C)®O Albert R Meyer, March 1, 2013 recursivef

```
( \(k^{n}\) - recursive function on \(\mathbb{N}\)
expt(k, 0) ::=1
expt \((k, n+1)::=k \cdot \operatorname{expt}(k, n)\)
--uses recursive def of \(\mathbb{N}\) :
- \(0 \in \mathbb{N}\)
- if \(n \in \mathbb{N}\), then \(n+1 \in \mathbb{N}\)
Recursive Functions
summary:
\(f:\) Data \(\rightarrow\) Values
\(f(b)\) def'd directly for base \(b\)
\(f(c n s t r(x))\) def'd using \(f(x), x\)

Size versus Depth
Constructor case: \([r=[s] \dagger]\) by ind. hypothesis:
\[
\begin{aligned}
& |s|+2 \leq 2^{t d(s)+1} \\
& |\dagger|+2 \leq 2^{t d(t)+1}
\end{aligned}
\]

\section*{Length versus Depth}

Lemma: \(|r|+2 \leq 2^{\operatorname{td}(r)+1}\) for all \(r \in M\)
Proof by Structural Induction
Base case: \([r=\lambda]\)
\(|\lambda|+2=0+2=2=2^{0+1}=2^{\operatorname{td}(\lambda)+1}\) OK!
@(®)(®) Albert R Meyer, March 1,2013



```

 loggy(2)::= 1
 loggy(x\cdoty)::= x+loggy(y)
 for x,y \inPP2
 loggy(4) = loggy(2 2) = 2 + 1=3
 loggy(8)= loggy(2 4) = 2 + loggy(4)
 =2+3=5
 loggy(16)= loggy(8 2)=8+\operatorname{loggy(2)}
 = 8 + 1 = 9
 @(O)

```
* ambiguous constructors
The Problem: more than one way to
construct elements of PP2 from
cnstrct(x,y) = x y y
    1 6 = c n s t r c t ( 8 , 2 ) ~ b u t ~ a l s o ~
    16 = cnstrct(2,8)
        ambiguous
@(\odot@()
Albert R Meyer, March 1,2013

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.```

