\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | 1 | | | | 12 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 | |
| 15 | 8 | 11 | 2 | | \\ The Logic of Propositions \\ February 14, 2014}

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | 4 | | \\ }

The text describes a bunch of algebraic rules to prove that propositional formulas are equivalent

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | 10 | 5 | |
| 3 | 1 | 4 | 1 | \\ }

Instead of truth tables, can try to prove valid formulas symbolically using axioms and deduction rules


```
Al
for example, the distributive law
PAND (Q OR R) \(\equiv\) (P AND Q) OR (P AND R)
```



```
for example,
DeMorgan's law
    NOT(P AND Q) \equiv
    NOT(P) OR NOT(Q)

\section*{โ! \\ \begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ A Proof System \\ Another approach is to start with some valid formulas (axioms) and deduce more valid formulas using proof rules}
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
A Proof System
Lukasiewicz' proof system is a particularly elegant example of this idea.

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|c|c|}
\hline 12 & & 10 & \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ A Proof System}

Lukasiewicz' proof system is a particularly elegant example of this idea. It covers formulas whose only logical operators are IMPLIES \((\rightarrow)\) and NOT.

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|c|}
\hline 12 & & 10 \\
\hline 3 & 1 & 4 \\
\hline 15 & 8 & 11 \\
\hline
\end{tabular} \\ Lukasiewicz' Proof System}

Prove formulas by starting with axioms and repeatedly applying the inference rule.
To illustrate the proof system we'll do an example, which you may safely skip.
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}

\section*{Lukasiewicz' Proof System}

Axioms:
1) \((\neg P \rightarrow P) \rightarrow P\)
2) \(P \rightarrow(\neg P \rightarrow Q)\)
3) \((P \rightarrow Q) \rightarrow((Q \rightarrow R) \rightarrow(P \rightarrow R))\)

The only rule: modus ponens

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & 1 & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ Lukasiewicz' Proof System}

Prove formulas by starting with axioms and repeatedly applying the inference rule.
For example, to prove:
\[
P \rightarrow P
\]

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline & & & \\
\hline
\end{tabular} \\ \begin{tabular}{|c|c|c|c|}
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular} \\ \(3^{\text {rd }}\) axiom: \\ \[
\begin{aligned}
& (P \rightarrow Q) \rightarrow \\
& ((Q \rightarrow R) \rightarrow(P \rightarrow R)) \\
& \quad \text { replace } R \text { by } P
\end{aligned}
\]}
\[
\text { February 14, } 2014
\]
```

*6
m, 品㐋A Lukasiewicz' Proof
3rd axiom:
Axiom 2)
(P->(\overline{P}->P))}
(((\overline{P}->P)->P)->(P->P))

```
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & & & \\
\hline
\end{tabular}
, 1
\(3^{\text {rd }}\) axiom:
\((P \rightarrow Q \quad) \rightarrow\)
\(((Q \rightarrow P) \rightarrow(P \rightarrow P))\)
replace \(Q\) by \((\bar{P} \rightarrow P)\)
February 14,2014
```

|6
*12 [
A Lukasiewicz' Proof
so apply modus ponens:
Axiom 2)
(P->(\overline{P}->P))->
(((\overline{P}->P)->P)->(P->P))

```
```

* 6
|12
A Lukasiewicz' Proof
so apply modus ponens:
(((\overline{P}->P)->P)

```
\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}

The 3 Axioms are all valid (verify by truth table).
We know modus ponens is sound. So every provable formula is also valid.

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline 3 & 1 & 4 & 14 \\
\hline
\end{tabular}}

so apply modus ponens:
\((P \rightarrow P)\)
QED

February 14, 2014
propositional logic. 19

\section*{\begin{tabular}{|c|c|c|c|}
\hline 6 & 9 & 13 & 7 \\
\hline 12 & & 10 & 5 \\
\hline
\end{tabular}}
\begin{tabular}{|c|c|c|c|}
\hline 12 & 1 & 5 & \\
\hline 3 & 1 & 4 & 14 \\
\hline 15 & 8 & 11 & 2 \\
\hline
\end{tabular}
Lukasiewicz is Complete
Conversely, every valid \((\) NOT \(\rightarrow \rightarrow\) )-formula is provable:
system is "complete"
Not hard to verify but would take a full lecture; we omit it.
```

*6

```

```

Algebraic \& deduction proofs in general are no better than truth tables. No efficient method for verifying validity is known.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

