MIT 6.042J/18.062J
 Proof by Cases: Friends \& Strangers

```
00.T
*)
00.0
    Six people. Every two are
    either friends or strangers.
    Claim: there is a set of
    3 \text { mutual friends or}
    3mutual strangers
```


Take 3 minutes to find a counter-example
--or convince yourself there
isn't any counterexample,
that is, the Claim is true.
counter-example
red line shows friends
blue line shows strangers

\section*{$9 \cdot 1017$
 | 12 | 10 | | |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 |}

A Proof of the Claim

Case 1: some pair of these friends are friends of each other, then we have 3 mutual friends:

\section*{| 6 | 9 |
| :---: | :---: |
| 13 | 13 |
| | 10 |
 A Proof of the Claim}

Since the Claim is true in either case, and one of these cases always holds, the Claim is always true.

QED

 Turns out that $R(4)=18$ (not easy!) $R(5)$ is unknown!
 Paul Erdös considered finding R(6) a hopeless challenge!
 So in our second class, we have reached a research frontier!

$\frac{90}{121017}$

For any k, every large enough group of people will include either size-k red clique, or size-k blue clique.
Let $R(k)$ be the large enough size.
So we've proved that $R(3)=6$.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

