Mathematics for Computer Science MIT 6.042J/18.062J
 Proof by Contradiction

\section*{
 | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |}

Proof by Contradiction
If an assertion implies something false, then the assertion itself must be false!
(a)®eత

Theorem: $\sqrt{2}$ is irrational.

Proof by Contradiction
Is $\sqrt[3]{1332} \leq 11$?
If so, $1332 \leq 1331$
That's not true, so
$\sqrt[3]{1332}>11$

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

- Suppose $\sqrt{2}$ was rational
- So have n, d integers without common prime factors such that

$$
\sqrt{2}=\frac{n}{d}
$$

- We will show that n \& d are both even.

This contradicts no common factor.

\section*{	6	13	7
12	10		
3	1	5	
15	8	11	}

Quickie

Proof assumes that if n^{2} is even, then n is even. Why is this true?

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

