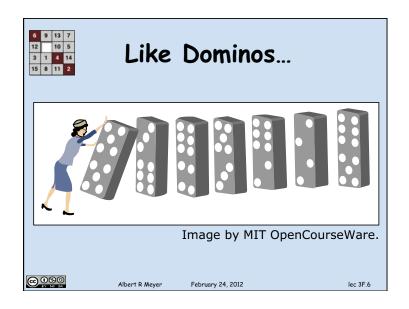


6 9 13 7 12 10 5 3 1 4 14 15 8 11 2	Ind	uction Rul	e	
R(0), ∀n.R(n)IMPLIES R(n+1)				
	∀m. R(m)			
	Albert R Meyer	February 24, 2012	lec 3F.5	



Example Induction Proof
Let's prove:

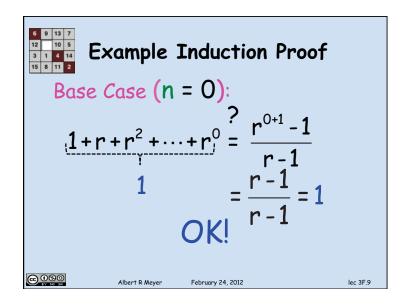
$$1+r+r^2+\cdots+r^n = \frac{r^{(n+1)}-1}{r-1}$$

(for $r \neq 1$)

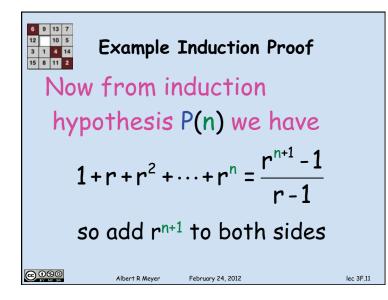
Example Induction Proof
Statements in magenta form a
template for inductive proofs:
Proof: (by induction on n)
The induction hypothesis, P(n), is:

$$1+r+r^2+\cdots+r^n = \frac{r^{(n+1)}-1}{r-1}$$

(for r \neq 1)



Example Induction Proof
Inductive Step: Assume P(n)
where
$$n \ge 0$$
 and prove P(n+1):
 $1+r+r^{2}+\cdots+r^{n+1}=\frac{r^{(n+1)+1}-1}{r-1}$
 $r-1$



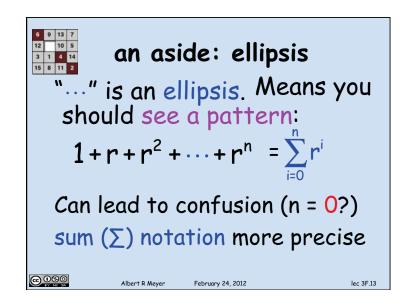
 6
 9
 13
 7

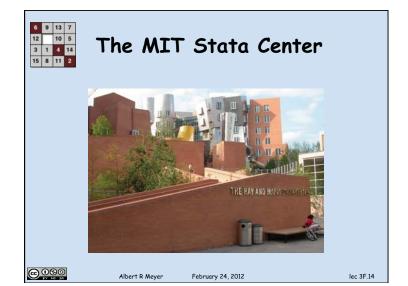
 12
 10
 5

 3
 1
 4
 14

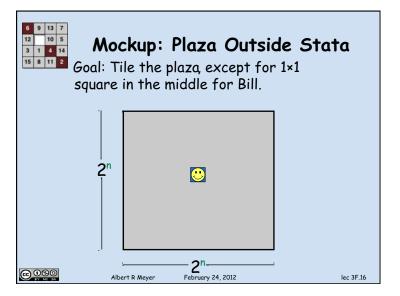
 15
 8
 11
 2

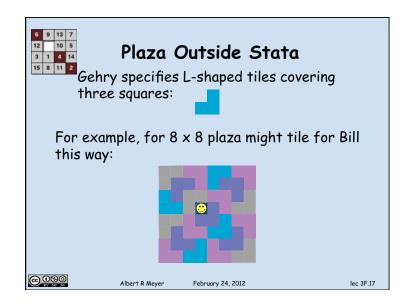
 Example Induction Proof adding r^{n+1} to both sides, $(1+r+r^{2}+\dots+r^{n})+r^{n+1} = \left(\frac{r^{n+1}-1}{r-1}\right)+r^{n+1}$ This proves $P(n+1) = \frac{r^{n+1}-1+r^{n+1}(r-1)}{r-1}$ completing the $r^{(n+1)+1}-1$ proof by induction. Albert R Meyer February 24, 2012 lec 3F.12

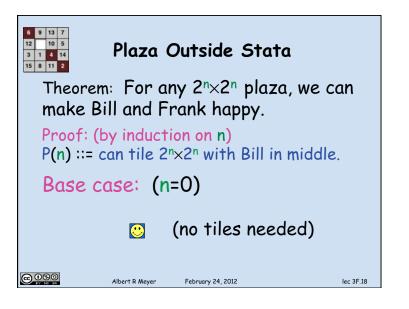


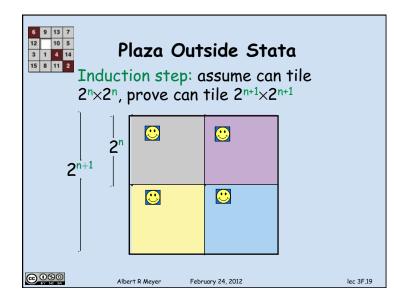


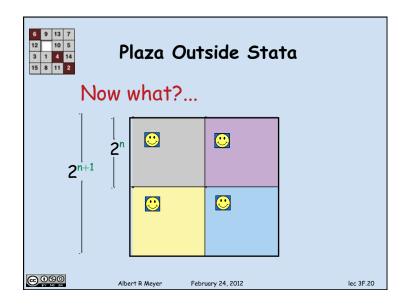
Copyright C 2003, 2004, 2005 Norman Walsh. This work is licensed under a Creative Commons license.











 $\odot \odot \odot \odot$

Plaza Outside Stata

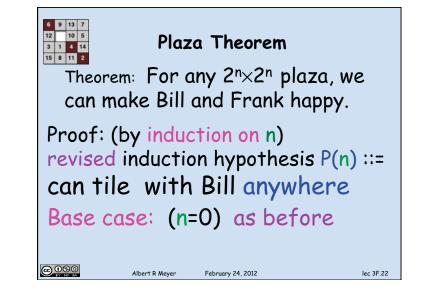
The fix:

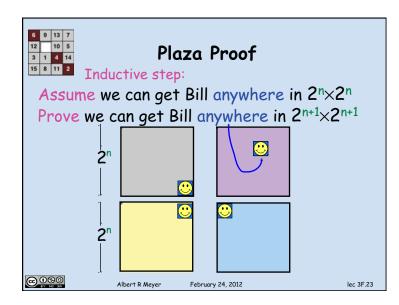
Albert R Meyer

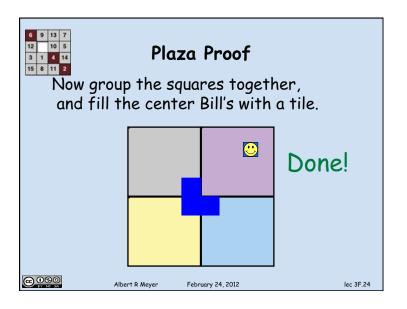
prove something stronger —that we can find a tiling with Bill in any square.

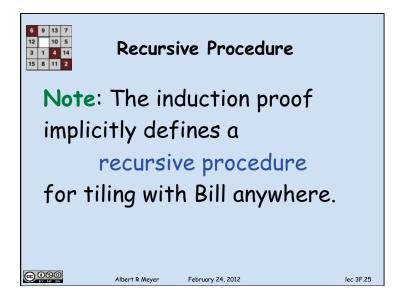
February 24, 2012

lec 3F.21









MIT OpenCourseWare http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.