

The Idea of Induction
 Color the integers ≥ 0 $0,1,2,3,4,5, ?, \ldots$ I tell you, 0 is red, \& any int next to a red integer is red, then you know that all the ints are red!
 Albert R Meyer February 24, 2012 Iec 3F.2

Color the integers ≥ 0
$0,1,2,3,4,5, \ldots$
I tell you, 0 is red, \& any int next to a red integer is red, then you know that all the ints are red!

Let's prove:
$1+r+r^{2}+\cdots+r^{n}=\frac{r^{(n+1)}-1}{r-1}$
$($ for $r \neq 1)$

Image by MIT OpenCourseWare.
\qquad

```
M,
    Statements in magenta form a
    template for inductive proofs:
    Proof: (by induction on n)
    The induction hypothesis, P(n), is:
        1+r+\mp@subsup{r}{}{2}+\cdots+\mp@subsup{r}{}{n}=\frac{\mp@subsup{r}{}{(n+1)}-1}{r-1}
    (for r }\not=1
```

©()엉
Albert R Meyer

Example Induction Proof

Base Case ($n=0$)

$$
\begin{array}{rl}
1+r+r^{2}+\cdots+r^{0} & ? \frac{r^{0+1}-1}{r-1} \\
1 & =\frac{r-1}{r-1}=1
\end{array}
$$

@๓๐ Albert R Meyer February 24, 2012 lec 3 F. 9

\section*{| 6 | 8 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | 1 | |
 }

Example Induction Proof
Now from induction
hypothesis $P(n)$ we have
$1+r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}$
so add r^{n+1} to both sides
(C) $(\mathbb{O}$

```
Mal
**m
    Inductive Step: Assume P(n)
    where }n\geq0\mathrm{ and prove P(n+1):
    1+r+\mp@subsup{r}{}{2}+\cdots+\mp@subsup{r}{}{n+1}=\frac{\mp@subsup{r}{}{(n+1)+1}-1}{r-1}
@(\odot@\odot
Abert R Meyer February 24, 2012
    lec 3F. }1
Example Induction Proof Inductive Step: Assume \(P(n)\) where \(n \geq 0\) and prove \(P(n+1)\) : \(1+r+r^{2}+\cdots+r^{n+1}=\frac{r^{(n+1)+1}-1}{r-1}\)
©(®)( Abert R Meyer February 24, 2012 lec \(3 F .10\)
```

```
M,
    iง|m
    adding rn+1 to both sides,
    (1+r+\mp@subsup{r}{}{2}+\cdots+\mp@subsup{r}{}{n})+\mp@subsup{r}{}{n+1}=(\frac{\mp@subsup{r}{}{n+1}-1}{r-1})+\mp@subsup{r}{}{n+1}
    This proves =
    P(n+1)
    lompleting the 
@(%)O
```

6	9	13	7
12		10	5
3	1	4	14
15	8	11	2

an aside: ellipsis
"..." is an ellipsis. Means you should see a pattern:

$$
1+r+r^{2}+\cdots+r^{n}=\sum_{i=0}^{n} r^{i}
$$

Can lead to confusion ($n=0$?) sum (Σ) notation more precise

Copyright © 2003, 2004, 2005 Norman Walsh. This work is licensed under a Creative Commons license.

6	9	13	7
12	10	5	

Plaza Outside Stata

Theorem: For any $2^{n} \times 2^{n}$ plaza, we can make Bill and Frank happy.
Proof: (by induction on n)
$P(n)::=$ can tile $2^{n} \times 2^{n}$ with Bill in middle.
Base case: $(n=0)$
(-) (no tiles needed)
@(®@® Albert R Meyer February 24, 2012 lec 3F. 18


```
***:%
    Theorem: For any 2n\times2n}\mathrm{ plaza, we
    can make Bill and Frank happy.
Proof: (by induction on n)
revised induction hypothesis P(n)::=
can tile with Bill anywhere
Base case: ( }n=0\mathrm{ ) as before
```


	Recursive Procedure		
		duction ines a e proc Bill an	
@ロ®	Alersemer		

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

