
Geometric Series
$G_{n}=1+x+x^{2}+\cdots+x^{n}$
$\frac{-x G_{n}=}{1}-x-x^{2}-\cdots-x^{n}-x^{n+1}$
1

Geometric Series
$G_{n}=\frac{1-x^{n+1}}{1-x}$
Consider infinite sum (series)
$1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots=\sum_{i=0}^{\infty} x^{i}$

The future value of $\$ \$$

I will pay you $\$ 100$ in 1 year, if you will pay me $\$ \times$ now.

The future value of $\$ \$$
My bank will pay me 3% interest. define bankrate

$$
\text { b ::= } 1.03
$$

- bank increases my \$\$ by this factor in 1 year.

```
    The future value of $$
If I deposit your $X now,
I will have $b·X in 1 year.
So I won' † lose money as long as
        b\cdotx>100
    x $ $100/1.03 \approx $97.09
\circ(థ)

The future value of \(\$ \$\)
- \$1 in 1 year is worth \(\$ 0.9709\) now.
- \$r last year is worth \$1 today, where \(r::=1 / b\).
- So \(\$ n\) paid in 2 years is worth \(\$ n r\) paid in 1 year, and is worth \(\$ n r^{2}\) today.
©(2) Albert R Meyer, April 10, 2013 geometric-sum. 14



MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.```

