Mathematics for Computer Science
MIT 6.042J/18.062J

Finite Cardinality

size of the power set

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| | | | |
 | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 |}

\# subsets of a finite set A ?
$|\operatorname{pow}(A)| ?$
for $A=\{a, b, c\}, \quad \operatorname{pow}(A)=$
$\{\varnothing, \quad\{a\},\{b\},\{c\}$,
$\{a, b\},\{a, c\},\{b, c\}, \quad\{a, b, c\}\}$

6	9	13	7
12		10	5

12		10	5
3	1	4	14
15	8	11	2

Mapping Rule (bij)
A bijection from
A to B implies
$|A|=|B|$
for finite A, B

```
*6
M,
\(A:\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n-1}\right\}\) subset: \(\left\{a_{0}, a_{2}, a_{3}, \ldots, a_{n-1}\right\}\)
    string: 1 0 0 1 1 0 0
this defines a bijection, so
    # n-bit strings = |pow(A)|
```

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | 4 | | | 12 | | 10 | 5 |
| :---: | :---: | :---: | :---: |
| 3 | 1 | 4 | 14 |
| 15 | | | | | 3 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |
 pow(A) bijection to bit-strings
 every computer scientis \dagger knows \#n-bit strings, so Corollary:
 \[

|\operatorname{pow}(A)|=2^{\prime}
\]}

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
 | | | | |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 |
| 3 | 1 | 4 | 14 |
 | 12 | 1 | 4 | 14 |
| :---: | :---: | :---: | :---: |
| 15 | 8 | 11 | 2 |
 Mapping Rule (surj)}

function: $A \rightarrow B$

$$
\begin{aligned}
& \text { Mapping Rule (surj) } \\
& {[\leq 1 \text { out }]: A \rightarrow B} \\
& \text { IMPLIES }|A| \geq \text { \#arrows. } \\
& {[\geq 1 \text { in }]: A \rightarrow B} \\
& \text { IMPLIES \#arrows } \geq|B| \text {. }
\end{aligned}
$$

Mapping Rule (surj) Surjective function from A to B implies $|A| \geq|B|$ for finite A, B

```
Mapping Rule (inj)
Mapping Rule (inj)
    total [ }\geq1\mathrm{ out] IMPLIES
            |A| \leq #arrows
```

 injection [\(\leq 1 \mathrm{in}\)] IMPLIES
 \#arrows \(\leq|\mathrm{B}|\)

Mapping Rule (inj)
 Total injective relation from A to B implies
 $|A| \leq|B|$ for finite A, B

\section*{| 6 | | | |
| :---: | :---: | :---: | :---: |
| 12 | 10 | 7 | |
| 10 | 10 | 5 | |
| | | | | | 12 | 10 | |
| :---: | :---: | :---: |
| 3 | 10 | 5 |
| | | 14 |
| | | |
 Mapping Lemma
 A bij B IFF $|A|=|B|$
 A surj B IFF $|A| \geq|B|$
 $A \operatorname{inj} B$ IFF $|A| \leq|B|$
 for finite A, B}

```
*6
A bij B ::= \existsbijection:A->B
A surj B::= \existssurj func:A->B
A inj B ::= \existstotal inj
relation:A->B
```



```
Ma,
    A bij B bij C ImPLIES A bij C
A surj B surj C Implies A surj C
A surj B surj A ImpliEs A bij B
    for finite A, B,C
    by the Mapping Lemma

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.```

