

6 9 13 7 10 5 Mapping Rule (bij) 3 1 4 14 15 8 11 2 A bijection from A to B implies $|\mathbf{A}| = |\mathbf{B}|$ for finite A, B Albert R Meyer finite-card.2 February 21, 2014

9 13 7
 12
 10
 5

 3
 1
 4
 14

 15
 8
 11
 2
pow(A) bijection to bit-strings A: $\{a_0, a_1, a_2, a_3, a_4, \dots, a_{n-1}\}$ subset: $\{a_0, a_2, a_3, \dots, a_{n-1}\}$ string: 1 0 1 1 0 ... 1 this defines a bijection, so # n-bit strings = |pow(A)| Albert R Meyer finite-card.4 February 21, 2014

6 9 13 12 10 3 1 4 15 8 11	7 5 14 2	apping Rule (surj)
IA Sl	[<1out APLIES Jrject	r]: A→B A ≥ #arr ion: A→B	ows.
	Albert R Meyer	February 21, 2014	finite-card.8

Familiar "size" properties				
A = B =	C IMPLIES	A = C		
$ A \ge B \ge$	C IMPLIES	A ≥ C		
$ \mathbf{A} \geq \mathbf{B} \geq$	A IMPLIES	A = B		
for finite A, B, C				
COSO Albert R Meyer	February 21, 2014	finite-card.16		

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.